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Abstract. New data are presented on charged particle 
pseudorapidity distributions for inelastic events pro- 

duced at c.m. energies ]//s=200 and 900 GeV. The 
data were obtained at the CERN antiproton-proton 
Collider operated in a new pulsed mode. The rise 

of the central density p(0) at energies up to ]fs 
= 900 GeV has been studied. A new form of central 
region scaling is found involving the density p,(0) for 
charged multiplicity n, namely that the scaled central 
density p,(O)/p(O) expressed as a function of z =  n/(n) 
is independent of s. Scaling in the fragmentation re- 
gion holds to 10-20%, and the small amount of scale- 
breaking observed here could be accommodated 
within the framework suggested by Wdowcyk and 
Wolfendale to account for both accelerator and cos- 
mic ray data. 

Introduction 

A study of hadron-hadron collisions at the highest 
energies has revealed many regularities that could 
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shed light on the underlying dynamics. The data [1, 

2] up to a c.m. energy (I/s) of 546 GeV reveal a steady 
rise with energy of the charged particle density in 
the central region near x = 0  (where x--pL/Pm,x as 
measured in the c.m.s), violating so-called Feynman 
scaling [3]. Whether there is scaling in the fragmenta- 
tion region (usually taken to mean I x l>0.05)  is, on 
the other hand, an open question, whose resolution 
is important for models and for an understanding 
1-4, 5] of cosmic ray cross-section measurements at 

]/s ~ 1 TeV and beyond. 
A measure of particle density can be obtained in 

terms of the rapidity of each produced particle, which 
can be approximated by the pseudorapidity (t/= 
- l n  tan 0/2) depending only on the c.m. production 
angle 0. In this letter we report on new measurements 
of the pseudo-rapidity distributions at c.m. energies 
of 200 and 900 GeV, the latter being the highest ener- 
gy accelerator data so far presented. The data are 
based on 3,500 (2,100) fully reconstructed events at 
900 (200) GeV from a run at the CERN Coltider dur- 
ing its operation in pulsed mode in March-April 1985. 
Details on the performance of the accelerator and 
other running conditions are given in [6]. 

Experimental Details 

The UA5 detector and event analysis procudures are 
described elsewhere [-7, 8, 9]. Two large streamer 
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chambers, 6m • 1.25 m x 0.5 m, where placed above 
and below the SPS beryllium beam pipe. This gave 
a geometrical acceptance of about  95% for I r / l<3,  
falling to zero at It/I = 5. The chambers were triggered 
by requiring one or more hits in scintillation counter 
hodoscopes at each end of the chambers covering 
2 < I t/I < 5,6. Two triggers were taken in parallel: a 
"2 -a rm"  trigger requiring hits a t  both ends to select 
mainly non single-diffractive (NSD) events, and a "1- 
a r m "  trigger demanding a hit in only one arm to 
select highly asymmetric events of the type 
~ + p - - * X + p *  such as single diffractive (SD) events. 
Monte  Carlo simulations were used to estimate that 
the 2-arm trigger accepted 95% (91%) of the NSD 
cross section at 900 (200)GeV, and to correct for 
those NSD events that were missed. By combining 
1-arm and 2-arm data we obtained a sample pertain- 
ing to the inelastic (i.e. NSD + SD) cross-section with 
93% (95%) efficiency, the losses again being corrected 
for by using the Monte  Carlo. Distributions for both 
the N S D  and inelastic samples are presented below. 

The methods by which streamer chamber tracks 
were measured, geometrically reconstructed, and as- 
sociated with pr imary or secondary vertices are as 
explained in [7, 8]. The observed pseudorapidity dis- 
tributions were corrected using Monte  Carlo simula- 
tions. The event generator in the simulation program 
was tuned so as to reproduce correctly the observed 
features of particle production at 546 GeV: multiplici- 
ty and rapidity distributions [7, 10], observed yields 
of strange particles and baryons [11-131 and of pho- 
tons [14]. The results were then parametrized as a 
function of c.m. energy [15, 8, 111, and calculations 
performed at 200 and 900 GeV. Further tuning was 
then performed in respect of multiplicity and rapidity 
distributions using early 900 GeV data already ana- 
lysed [9, 16]. Produced particles were tracked 
through the detector allowing for interactions and 
scattering. Measurement  errors were taken into ac- 
count. The 10,000 simulated events were then used 
to determine the efficiency of the 1-arm and 2-arm 
triggers, and the effects of geometrical acceptance 
losses and residual contaminat ion of pr imary tracks 
by secondaries [81. The outcome was an estimate of 
the efficiency en0l) for observing tracks as a function 
of t/ and charged multiplicity n for each of the event 
categories NSD and inelastic, and these were used 
to obtain corrected pseudorapidity distributions from 
observed ones. 

* Because of the background from the more intense proton bunch 
the other 1-arm trigger, yielding events of type f i + p ~ + X ,  was 
not used 

Results 

1 da 
Figures 1 a and b show the distributions p(q)= 

a dq '  
for NSD and inelastic events respectively, at 53, 200, 
546 and 900 GeV. The 53 GeV data [171 were from 
an earlier run with the U A 5  detector at the ISR, 
where similar analysis procedures were used. Likewise 
the 546 GeV data were from the 1982 U A 5  Collider 
run [81. The fact that the data at all four energies 
came from the same detector using the same analysis 
methods obviously means that comparisons between 
energies are more reliable. Figures 1 a, b show that 
whereas the available rapidity range (Ybeam 

= l n  [ /s  ) has extended by about  72% in going 
mproton 

from 53 GeV (4 units) to 900 GeV (6.9 units), the 
width of the distribution has only increased by about  
50%. There is a continuing steady rise in the central 
value p(0), as shown in Fig. 2, which includes data 
from from ISR [181 and Fermilab [191. The inelastic 

values of p(0) above l / s =  15 GeV can be fitted to 
either a lns or power law dependence on energy, viz 

p(0) = (0.01 ___ 0.14) + (0.22 ___ 0.02) Ins (z2/NDF = 6.0/7) 

= (0.74 _+ 0.04) s (~ 105 _+ o.0o6)(z2/NDF = 4.8/7). 

These fits are shown as curves on Fig. 2. 
1 

Figures 3 a and b show the distributions p , ( q ) = - -  
da.  . a. 

In different intervals of charged multiplicity n 
dr/ 

for NSD events at 200 and 900 GeV. At fixed n, p.(0) 

is falling with increasing ~s ,  and the p.(tl) distribu- 
tions are getting broader. The values of pn(0) are plot- 
ted against n for 200, 546 and 900 GeV in Fig. 4a. 
Figure 4b shows values of the ratio of p.(0) at the 
same n for two pairs of energies. Naively one would 
expect p,(0) to scale like 1/Ybeam for fixed n, but in- 
stead of 900 546 p, (O)/pn (0) p, (O)/p, (0)=0.92 and 900 200 

=0.78 as expected, one finds experimental values of 
(0.88_+0.01) and (0.71 _+0.01) respectively. Figure (4a) 
also shows that at fixed energy p,(0) is rising faster 
than n, meaning that distributions are getting nar- 
rower with n. Despite these tendencies, we see in 
Fig. 4c the result of plotting against z =  n/ (n )  values 
of p,(0) divided by the overall central density p(0) 
= ~ P,  p, (0), where P,  = a,/a ; within errors the points 
for different energies interpolate one another. The in- 
set which uses a logarithmic scale for the ordinate 
shows how remarkably good this result is for low 
values of z where the error bars are too small to show 
on Fig. 4c. This would appear  to be a new form of 
scaling in the central region of pseudorapidity. 
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Fig. I a, h. Pseudorapidity distributions obtained by UA 5 at various 
energies from the ISR and the CERN Collider for a non single- 
diffractive (NSD) events, b inelastic (i.e. NSD + SD) events 
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Fig. 3a, b. Pseudorapidity distributions in various intervals of 
charged multiplicity n for NSD events at a 200 GeV and b 900 GeV 

Finally we turn to the question of scaling in the 
fragmentation region, I x [ > 0.05. Unfortunately, we do 
not have data in terms of the X-variable itself. Data 
for the inclusive processes p p  ~ rc +- X at laboratory 
momenta up to 300 GeV/c showed [-20] scaling to 
4-10% in the laboratory rapidity variable, Yiab, for 
Ylab,~ < 1.0. However, for charged particle production 

at the I S R ( ] ~ = 3 0 . 8  to 53.2 GeV) there was good 
evidence [-21] for fragmentation region scaling in the 
pseudorapidity variable q. In terms of rapidity, frag- 

1 da  
mentation region scaling would require - to have 

an energy independent shape when expressed as a 
function of Ybeam = Y~ms-- Yb . . . .  where Yb~am 
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Fig. 4. a Central rapidity density p,(0) 
plotted as a function of charged 
multiplicity n for Collider NSD data  at 
200, 546 and 900 GeV. b Values of ratio of 
p,(0) at two pairs of energies as shown 
plotted against n. The dashed lines indicate 
mean values, e Plot of the scaled central 
density p.(O)/p(O) against z=n/(n) for 
Collider data at 200, 546 and 900 GeV. 
The inset shows on a logarithmic scale the 
values for small values of z 

= I n  v , in a region Ybeam~--2"5*" In Fig. 5 we 
mproton 

1 d a  
show plotted against y . . . . .  taken to be 

a dr/ 

for inelastic data in the range ~ s = 5 3  to r/--Yb 
900 GeV. Fragmentat ion region scaling holds to 10- 
20%. Therefore one simple description of the data 
is a steady energy-independent rise with the variable 
Yb . . . .  until the energy-dependent plateau height given 
by Fig. 2 is reached. However, some slight trend to- 
wards lower values of Ybeam for the same value of 
1 d~r 

as s increases may be discernible, indicative 
a dr/ 
of some scale breaking. 

An interpretation of both accelerator and cosmic 
ray data I-4, 5, 22-25] has already led to the view 
that a substantial scale-breaking of the invariant cross 
section for single particle production is occurring. 
Wdowczyk and Wolfendale [-4, 22, 23] have suggested 
that scaling violations in the fragmentation region 
may be linked to the well-known violations in the 
central region. They have proposed that x be replaced 

(;o) as the scaling variable by x , so that Feynman 
scaling would become 

2 E l  d2tr s �9 s " 

1 
* To see this, note that lx]>0.05 implies ~eY~s inhy  

PL 0 .051~  
= ~ ~ # #  , >  where ,u=(p2+m2) 1/2. At 200 GeV, (Iz),~(pr) 

=0.39 GeV and so y >3.2, and hence Yb=,m> --2.2 

The inelasticity factor k(s, So) is intended to allow [-23] 
for a reducing fraction of the c.m. energy going into 
charged particle production as s increases. Equa- 
tion (1) would lead in the central region to an increase 

of p(0) proport ional  to k(s, so) . The data of 

Fig. 2 showed a dependence of p(0) on energy like 
/ S \~ / S \~ '  

'~176 whichsuggestswe take k(s, so)[~o) ~ t ~ o )  " 
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To compare (1) with our high energy data it must 
be transformed into dependence on the pseudorapi- 
dity variable and integrated over transverse momen- 
tum. In the Appendix we show how this can lead 
to the following conjecture concerning beam fragmen- 

tation region scaling, namely that 1 da { s ~-~' a ~ \Soo] is in-  

dependent of s when expressed as a function of the 

- -  To test this new scaling variable sinh t/\So/ " 

conjecture we take experimental values of (P r )  for 
charged particles to be 0.38 GeV/c at 53 GeV [26], 
and 0.39, 0.425 (= (pO)) and 0.446 GeV/c at 200, 546 
and 900 GeV respectively [27]. The two parameters 

and c~' were then adjusted so that the data points 
at 53, 200 and 900 GeV lay as close as possible to 

the values at the reference energy V~o = 546 GeV. We 
note that at this reference energy the scaling variable 
is just sinhq. The result of this two-parameter fit, with 
zZ/NDF=80/47, was the values ~=0.25_0.02 and 
c(=0.110-t-0.005 and the plot shown as Fig. 6. Scaling 
appears to be quite good over the whole range 0.01- 
100 of this new scaling variable, and particularly good 
for the beam fragmentation region (sinht/>10) for 
data over the whole Collider range 200-900 GeV. We 
note that this fit requires that the inelsticity parameter 
k(S, So)~S~176 A recent analysis [28] 

of charged particle multiplicity distributions up to 
Collider energies found that k (546 GeV)/ 
k(63 GeV)=0.60+0.06, while we would obtain the 
value 0.55 _+ 0.05. This consistency may lend credibili- 
ty to the ad hoc formulation of (1) and (A5). 

Summary 

New p/5 data up to ]//~=900 GeV show a continua- 
tion of a power law rise with s of the central rapidity 
density p(0). They also reveal a new form of central 
rapidity region scaling in which the scaled central 
density p,(O)/p(O) expressed as a function of z = n/ (n)  
is independent of s. Scaling in the fragmentation re- 
gion holds to 10-20% in terms o f  the pseudorapidity 
variable, and the small amount of scale breaking ob- 
served here can be accommodated within the frame- 
work of Wdowczyk and Wolfendale based upon an 
inelasticity and (P r )  changing with s and the scaling 

variable x ( s y .  
\Sol 
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Appendix 

The invariant single particle cross section (1) can be 
written 

~. d y d p  2 = f smhy ,Pr  (A1) 

2# 
on using x = ~  sinhy, where #=(p~--t-m2) a/2, and m 

V o 
is the mass of a charged secondary particle (assumed 
below to be a pion). We need to rewrite this in terms 
of the variables q and Pr, so We use the relation 

# sinh y = Pr sinh I/ (A 2) 
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which leads to 

1 d 2 a [ \~' 

a dtldp 2 

(A3) 

In the beam fragmentation region, r/~ y > 3 (see foot- 
note to p. 4), and so the Jacobian expression in square 
brackets is nearly unity except for pT<m cosh-1 ~/, 
i.e. pT<0.014 GeV/c, and so can be neglected. We 
thus have 

[ f Pr sinht/(~s) ~, dp~. (A4) 
a \So/ 

In the absence of further knowledge of the function 
f we conjecture that beam fragmentation region scal- 

l da { s'~ -~' 
ing is to mean the following: namely that a ~ ~ ]  

is independent of s when expressed as a function of 

the new scaling variable (pT~ " ~ (~oof -a/z ( p O )  s l n n q  , i.e. 

l d a { s ~  -~' f (PT)  �9 (S.)~- '/2"~ (A5) 
a dr/\sol = F I ( P ~  smht/\So] )" 

The quantity (p~ is the value of (Pr) at S=So, at 
which energy the scaling variable is just sinh~/. 
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