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Abstract. There are at least three fundamental states of matter, depending upon temperature and pressure:
gas, liquid, and solid (crystal). These states are separated by first-order phase transitions between them.
In both gas and liquid phases a complete translational and rotational symmetry exist, whereas in a solid
phase both symmetries are broken. In intermediate phases between liquid and solid, which include liquid
crystal and plastic crystal phases, only one of the two symmetries is preserved. Among the fundamental
states of matter, the liquid state is the most poorly understood. We argue that it is crucial for a better
understanding of liquids to recognize that a liquid generally has the tendency to have a local structural
order and its presence is intrinsic and universal to any liquid. Such structural ordering is a consequence
of many-body correlations, more specifically, bond angle correlations, which we believe are crucial for
the description of the liquid state. We show that this physical picture may naturally explain difficult
unsolved problems associated with the liquid state, such as anomalies of water-type liquids (water, Si, Ge,
. . . ), liquid-liquid transition, liquid-glass transition, crystallization and quasicrystal formation, in a unified
manner. In other words, we need a new order parameter representing a low local free-energy configuration,
which is a bond orientational order parameter in many cases, in addition to a density order parameter for
the physical description of these phenomena. Here we review our two-order-parameter model of liquid and
consider how transient local structural ordering is linked to all of the above-mentioned phenomena. The
relationship between these phenomena is also discussed.

1 Introduction

We usually have an impression that liquid is in a com-
pletely random disordered state and has perfect transla-
tional and rotational symmetry. This may be true at a
high-temperature or low-density limit near the gas-liquid
transition. However, this picture is not necessarily cor-
rect. We have accumulated a number of evidence for lo-
cal structural ordering in liquid. This is particularly well
known for liquids such as water and Si [1] and metallic
liquids [2]. For example, a liquid often exhibits a shoulder
around the main peak of the scattering function and/or a
prepeak in a low-k side of the main peak, which are direct
signatures of local structural ordering. Numerical simula-
tions provide even more direct evidence for the presence
of local (or mesoscopic) structural ordering and allow us
to study the details of such a structure and its lifetime.
Recently confocal microscopy also enables us to experi-
mentally access the structure and dynamics of a colloidal
suspension at a single-particle level [3–7]. Thus, we can
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even directly reveal such long-lived local structural order-
ing experimentally in colloidal gels and glasses [8]. Such a
signature of local structural ordering is more pronounced
at lower temperatures below the melting point Tm of an
equilibrium crystal. However, it was also shown that such
local structural order can exist even above Tm, i.e., in an
equilibrium liquid state. Thus, such ordering should not
be regarded as something specific to a supercooled state
or a glassy state. We also emphasize that this conclusion
should be general and “not” restricted to some special
families of liquids [9]. For example, even hard spheres,
which interact with the simplest interaction, have such a
tendency of local structuring at a high density in order to
lower the free energy, or to increase the entropy of a system
“locally” [10–15]: medium-range crystal-like bond orien-
tational order and local icosahedral order, which compete
with each other because of the mismatch in symmetry
between them. Thus, we may say that local structural or-
dering, or the formation of locally favoured structures, is
intrinsic and generic to a liquid state of any material [16,
17,9]. This forces us to change a simplified picture that
liquid is in a perfectly disordered homogeneous state.
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This view is not necessarily new and in particular a
tendency of liquid to form local structural order by direc-
tional bondings such as covalent and hydrogen bondings
has been recognized for a long time. For example, water
has been known to form local tetrahedral order stabilized
by hydrogen bonding [18–20]. This was already recognized
by Röntgen [21], which led him to the famous mixture
model of water. Many molecular liquids are also expected
to form some local structures stabilized by hydrogen bond-
ing or by van der Waals interactions, although the details
of such structures are difficult to figure out experimentally.
This is due to i) the difficulty to extract a non-periodic
local structure from the spatial correlation of the scalar
density field in the wave number (k) space, ii) its vibra-
tional distortion, and iii) its short lifetime. Thus, it has
not been widely recognized that the local structuring ten-
dency is a universal key feature of liquids.

Apparently, an atomic liquid, which has no obvious
internal degrees of freedom, looks one of the simplest liq-
uids. However, it has been known since a seminal work by
Frank [2] that for metallic liquids, in which atoms inter-
act approximately by the Lennard-Jones potential, icosa-
hedral order is favoured locally. This feature is further en-
hanced by the covalent nature of bonding between metals.
Furthermore, some atomic liquids exhibit much more com-
plex behaviours, because of anisotropic electronic interac-
tions reflecting the symmetry of the electronic wave func-
tions. Thus, some atomic liquids can hardly be regarded
as simple Lennard-Jones liquids. For example, semimet-
als (Sb, Bi, Te, Ga, . . . ) and some group-IV elements (Si,
Ge, . . . ) are famous for a number of unusual behaviours
in this regard [22]. It is widely known that in a liquid
state of these elements and chalcogenides, atoms tend to
form local structures by covalent bondings. For example,
the thermodynamic anomalies of liquid Te was analysed
successfully in terms of a mixture model by Tsuchiya [23].
These liquids including water are often called network-
forming liquids. However, we prefer to regard such or-
dering as the formation of locally favoured structures
rather than network formation (see, e.g., ref. [24] and also
below).

Despite much evidence for the presence of short-range
ordering in liquid, it is not necessarily regarded as an in-
trinsic and universal feature of liquid until recently and
the liquid state theory is basically described only by the
scalar density field (in most cases by its pair correlation).
The density functional theory and mode-coupling theory
are successful theories along this line. Thus, it has been be-
lieved that the density order parameter can describe a gas-
liquid transition, liquid-glass transition, and liquid-crystal
transition which accompanies the break down of the trans-
lational symmetry. Thus, it was not so clear whether local
structural ordering has important and fundamental roles
in the behaviour of liquids or not. However, the above-
mentioned examples clearly indicate that the state of a
liquid cannot be described by two-body correlations of
the scalar density field alone. Based on this recognition,
some time ago we proposed that we need bond order pa-
rameter(s) representing local and mesoscopic structural
ordering for the physical description of the liquid state, in

Fig. 1. (Colour on-line) Locally favoured structures (red pen-
tagons) spontaneously formed in a sea of normal liquid struc-
tures. This is obtained by molecular dynamics simulations of
spherical particles interacting with special anisotropic poten-
tial, which we call two-dimensional (2D) spin liquid [24].

addition to the scalar density order parameter [16,17]. Our
basic picture of the liquid state can be seen in fig. 1, where
pentagons (represented by red colour particles), which we
call locally favoured structures, are created and annihi-
lated in a sea of normal-liquid structures. In this 2D spin
liquid, while further decreasing the temperature, crystal-
like bond orientational order also develops and competes
with locally favoured structures of five-fold symmetry (see
below) [24]. We proposed that bond orientational order-
ing also plays crucial roles under its coupling to density
order parameter in various phenomena observed in a liquid
state. Here we demonstrate that this two-order-parameter
model may naturally describe water-like anomalies [25,
26,22,27], liquid-liquid transition [16,9,28–30], glass tran-
sition [31,32,24,33–35,10–12], crystal nucleation [36,37,
11,12], and quasicrystal formation [35], within the same
framework.

In principle, we may also develop a theory by including
appropriate many-body density correlations (three-body,
four-body, . . . ) in addition to the two-body contribution,
instead of introducing bond orientational order, but we
think that the latter approach is physically and intuitively
more appealing than the former approach.

As shown below, our model can explain these phenom-
ena on an intuitive level as follows:

1) Water-like thermodynamic anomaly of liquids is a re-
sult of the local ordering of bond order parameter [25,
26,22].

2) Liquid-liquid transition is a result of the gas-liquid-like
cooperative ordering of bond order parameter (whereas
a gas-liquid transition is that of density order param-
eter) [9].

3) Vitrification is a result of i) competition between
competing orderings, namely, between crystallization
(long-range density and orientational ordering) and lo-
cal bond ordering or ii) random disorder effects on
crystallization [17,34,35].
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4) Crystallization is initiated by the enhancement of
the coherence of bond orientational ordering already
developed in a supercooled liquid [36,37,11,12,38,39],
and “not” by density ordering.

We also point out that a liquid having a strong tendency
of short-range bond ordering may even achieve long-range
bond ordering, if the local symmetry allows its growth to
a (quasi-)long-range order. Such phenomena can be seen
in a) water and water-like tetrahedral liquids [22] and b)
metallic liquids [35]. For case a), a crystal having a larger
specific volume than a liquid is formed (ice Ih in the case
of water and the diamond-type crystal for Si), whereas
for case b) quasicrystal is formed. These ordered states
can be viewed as results of long-range bond orientational
ordering with and without periodicity, respectively.

In the following, we mainly review our own works on
the four topics 1)-4) mentioned above, to draw a unified
physical picture for these phenomena on the basis of the
concept of spontaneous bond orientational ordering in a
liquid. Thus the physical views on these topics may be
highly biased. The more balanced views on these phe-
nomena may be found in refs. [40–42,1,20] on topic 1),
refs. [43,1,40,44,45] on topic 2), refs. [46,47,1,48–53] on
topic 3), and refs. [54–57,53] on topic 4).

The organization of this paper is as follows. In sect. 2
we describe our phenomenological two-order-parameter
model of liquid. In sect. 3, we discuss thermodynamic and
kinetic anomalies of water-type liquids. In sect. 4, we dis-
cuss liquid-liquid transition. In sect. 5, we discuss glass
transition. In sect. 6, we discuss crystal nucleation assisted
by medium-range crystal-like bond orientational order in
a supercooled liquid. In sect. 7, we summarize our paper.
The paper is organized so that each section can be read
rather independently, but this results in some duplicated
descriptions.

2 Phenomenological two-order-parameter
model of liquid

2.1 Overview

The standard liquid state theory has been developed on
the basis of an ideal homogeneous liquid, and thus a ran-
dom disordered structure has been assumed. This is the
basis for the description of liquid by the two-body density
correlator, or the radial distribution function g(r). Recent
studies indicate that this picture is not sufficient even for
a hard-sphere liquid [10–12]. The assumption of a homo-
geneous disordered structure of a liquid is always correct
as the zeroth order approximation. However, we believe
that a physical description beyond this is prerequisite for
understanding unsolved fundamental problems in a liquid
state, which include thermodynamic and kinetic anomalies
of water-type liquids, liquid-liquid transition, liquid-glass
transition, and crystal nucleation.

As described above, a liquid is in a disordered state
in the long range, but it can possess short-range and/or
medium-range bond order. Such temporal bond orderings

Fig. 2. (Colour on-line) A two-state model for a liquid: One is
normal-liquid structures (energy Eρ, degeneracy gρ, and spe-
cific volume vρ) and the other is locally favoured structures
(energy ES , degeneracy gS , and specific volume vS). For some
liquids, there may be more than two distinct energy states.

are induced to gain correlational entropy (e.g., for hard
spheres) and/or by specific (often directional) energetic
interactions between atoms or molecules that have the
symmetry-selective nature. The latter may stem from in-
teractions such as hydrogen and covalent bondings. The
most well-known examples of local bond order are a tetra-
hedral structure for water, silicon, silica, and germania
and an icosahedral structure for metallic glass formers.
However, it should be noted that even hard-sphere liquids
can possess local icosahedral order as well as medium-
range crystal-like bond orientational order to gain the to-
tal entropy under a competition between correlational and
configurational entropy [11,12,10,37].

As in the above case of hard spheres, there can be two
types of bond orientational orderings, one of which is as-
sociated with local structural ordering and the other with
medium-range crystal-like bond orientational order. On
the basis of this physical picture, we express a liquid state
by a simple two- (or multi-) state model with cooperativ-
ity of such bond orderings (see fig. 2). The first two-state
model of liquid-liquid transition (LLT) was developed by
Strässler and Kittel [58] and used by Rapoport [59] to ex-
plain melting-curve maxima of atomic liquids, such as car-
bon, at high pressure. In these models, only short-range
ordering was considered. Some time ago, we generalized
this basic idea by introducing the bond order parameter(s)
in addition to the density order parameter, and proposed
the two- (or multi-) order-parameter model of liquid to ex-
plain not only LLT, but also water-like anomalies, liquid-
glass transition and crystallization. Below we present a
general framework of our model of liquid to describe these
phenomena. We also show how these phenomena, which
are apparently independent of each other, can be closely
related to each other.

2.2 Local bond ordering associated with the formation
of locally favoured structures: Basis for water
anomalies and liquid-liquid transition

First we focus on short-range bond orientational order-
ing. Our model [25,27,26,22,9,17] relies on a physical pic-
ture (see fig. 1) that i) there exist distinct locally favoured
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structures in a liquid and ii) such structures are formed in
a sea of normal liquid structures and its number density
increases upon cooling since they are energetically (en-
tropically for hard spheres) more favourable by ΔE than
normal liquid structures: ΔE = Eρ−ES (see fig. 2), where
Ei is the energy of state i (i = ρ or S). Here normal liq-
uid structures simply mean the background normal liquid
structures. The specific volume and the entropy are larger
and smaller for the former than for the latter, respectively,
by Δv = vS − vρ and Δσ = kB ln(gρ/gS). Here vi and gi

are, respectively, the specific volume and the degree of the
degeneracy of state i (i = ρ or S). Δv can be either pos-
itive or negative depending upon a system, whereas Δσ
is positive except for purely repulsive systems such as a
hard-sphere liquid, where the gain of correlational entropy
is the driving force of local structural ordering. We iden-
tify locally favoured structures as a minimum structural
unit (symmetry element). It is tetrahedral order for water-
type liquids, whereas icosahedron for metallic liquids [2,
60] and hard spheres [13–15]. To express such short-range
bond ordering in liquids, we introduce the so-called bond-
orientational order parameter Qlm [61–63].

Bond orientational order can be expressed by the dis-
tribution of bonds jointing a particle located at r to its
nearest neighbours [62]. Expanding the density ρ(r, ω) of
points pierced by these bonds on a small sphere inscribed
about r, we have [62]

ρ(r, Ω) =
∞∑

l=0

m=l∑

m=−l

qlm(r)Ylm(Ω), (1)

where the Ylm(Ω) are spherical harmonics.
We take the normalized average of qlm over a small

volume located at r, which we express by q̄lm(r). Then,
its rotationally invariant combination can be defined as

ql(r) =

[
4π

2l + 1

l∑

m=−l

|q̄lm(r)|2
]1/2

. (2)

We can use the fraction of atoms (or particles) having
ql(r) higher than a certain threshold value as the local
bond order parameter S (note that S is “not” entropy
and instead σ represents entropy throughout this paper).
If the two-state picture is correct, there should be a clear
threshold value separating the two states. Note that l = 6
for icosahedron [61], whereas l = 3 for tetrahedron [64].
For tetrahedrality, we can also define a more specific order
parameter [65,66]:

qtetra = 1 − 3
8

3∑

j=1

4∑

k=j+1

(
cos Ψjk +

1
3

)2

.

In the case of water, Ψjk is the angle formed by the lines
joining the oxygen atom of a given water molecule and
those of its nearest neighbours j and k.

Here we also define other quantities characterizing
bond orientational order

wl =
∑

m1+m2+m3=0

(
	 	 	

m1 m2 m3

)
qlm1qlm2qlm3 . (3)

Here the term in brackets in the above third-order rota-
tional invariant is the Wigner 3-j symbol. Following [67]
we coarse-grain the tensorial bond orientaional order pa-
rameter over the neighbours:

Qlm(i) =
1

Ni + 1

⎛

⎝qlm(i) +
Ni∑

j=0

qlm(j)

⎞

⎠ , (4)

and define coarse-grained invariants Ql and Wl in the same
way as the above. Structures with and without spatial ex-
tendability are then much easier to tell apart [67]. We note
that for non-extendable local structures like icosahedra,
their Ql and Wl are buried into the liquid distribution.
In the following, we also use Ql to express ql unless we
explicitly state Ql ≡ Ql.

As can be seen above, both the scalar density field
ρ and the tensorial bond orientational order Q stem
from the angle-dependent density field ρ(r, Ω). With
this orientational order parameter, the phenomenological
liquid-state free-energy functional associated with locally
favoured structures is given by [25,27,26,22,9,17]

f(S) =
∫

dr
[
− ΔGS(r) + JS(r)(1 − S(r))

+kBT (S(r) ln S(r) + (1 − S(r)) ln(1 − S(r)))
]
,

(5)

where ΔG = ΔE − TΔσ − ΔvP . ΔG is the free-energy
change associated with the formation of a locally favoured
structure. J represents the cooperativity, kB is the Boltz-
mann constant, T is the temperature, and P is the pres-
sure.

Next we consider density ordering, which describes
crystallization [17,31,32,11,12]. Since we are interested
only in equilibrium and supercooled liquid states, we do
not consider a gas-liquid transition, which is also described
by density ordering.

2.3 Crystallization as cooperative translational and
bond orientational ordering: Basis for glass transition
and crystal nucleation

2.3.1 Classical density functional theory of freezing

The free-energy functional, denoted F{ρ}, is expanded
functionally about a density, ρ = ρl, corresponding to a
liquid state lying on the liquidus line of the solid-liquid co-
existence phase diagram of a pure material. The expansion
is performed in powers of δρ = ρ−ρl. Then the free-energy
density can be written as [68,69]

Fx{ρ}
kBT

=
∫

dr

[
ρ(r) ln

(
ρ(r)
ρl

)
− δρ(r)

]

+
∞∑

n=2

1
n

n∏

i=1

∫
driδρ(ri)Cn(r1, r2, . . .), (6)

where Fx{ρ} is the free energy corresponding to the den-
sity ρ(r) minus that at the constant density ρl, and the
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Cn functions are n-point direct correlation functions of
an isotropic fluid. Formally the correlation functions are
defined by

Cn(r1, r2, . . .) =
δnΦ∏n

i=1 δρ(ri)
, (7)

where Φ represents the total potential energy of interac-
tions between the particles in the system.

The free energy of a liquid made of m components can
be simplified up to the second order as

Fx{ρ}
kBT

=
m∑

i=1

∫
dri

[
ρ(ri) ln

ρ(ri)
ρl

− δρ(ri)
]

+
∑

i,j

∫
dridrjδρ(ri)Cijδρ(ri), (8)

where the sums are over the elements in a mixture, δρi =
ρi − ρi

l and ρi
l is the value of the number density of com-

ponent i on the liquid-side of the liquid-solid coexistence
line. The function Cij is the two-point direct correlation
function of between components i and j in an isotropic
fluid. As in the case of a single-component system, it can
be assumed that Cij = Cij(|ri − rj |). The next term in
the expansion of eq. (8) contains the three-point correla-
tion, the next after that, the four point, etc. It should be
noted that these higher order correlations may be crucial
for some systems.

The free-energy functional of a single-component sys-
tem is considered in the limit that the series given in
eq. (6) can be truncated at C2 = c:

F 2
x{ρ} = kBT

∫
dr ρ(r)

[
ln

ρ(r)
ρl

− 1
]

+
∫∫

drdr′δρ(r)c(r − r′)δρ(r′). (9)

To understand the basic features of this free-energy
functional it is useful to expandF 2

x{ρ} in terms of 〈δρ(r)〉 =
〈ρ(r)〉 − ρl, where 〈ρ(r)〉 is the locally averaged density.
Below, we consider the symmetry selection upon freezing
on the basis of this simple free energy.

2.3.2 Alexander-McTague theory of liquid-solid transition

To see the essence of density functional theories on solid-
ification, we review the seminal argument by Alexander
and McTague [70], which puts a focus on the instability of
density fluctuations around k = k0 (see also [71,72]). The
reasonable approximation to the structure factor S(k) is
to consider only the main maximum peak around k = k0

and ignore minor peaks by assuming the following form:

S(k) =
kBT

τ + κ(k2 − k2
0)

, (10)

where τ = a(T−T ∗
m). We note that the ignorance of minor

peaks throws away information on local structural order-
ing, which actually plays a key role as will be shown later.

The temperature T ∗
m is the mean-field limit of stability of

the liquid phase. Note that S(k) is the Fourier transfor-
mation of the two-point density correlator,

S(r, r′) = 〈δρ(r)δρ(r′)〉.

Since χ(r, r′) = kBTS(r, r′) is the functional derivative
of the free energy with respect to the mean-field density
fields 〈δρ(r)〉 and 〈δρ(r′)〉, a phenomenological free energy
which gives eq. (10) in the mean-field level is

Fρ =
∫

drdr′〈δρ(r)〉χ−1(r, r′)〈δρ(r′)〉

−w

∫
dr〈δρ(r)〉3 + u

∫
dr〈δρ(r)〉4, (11)

where

c(r, r′) ∼= χ−1(r, r′) = [τ + κ(∇2 + k2
0)

2]δ(r − r′).

Note that in general c(r, r′) = (a0 + a1∇2 + a2∇4 + . . .)
δ(r − r′), where the gradients are with respect to r′.

Using the Fourier decomposition of eq. (11), we obtain

fρ =
Fρ

V
=

∑

G

1
2
τG|ρG|2

−w(k0)
∑

G1,G2,G3

ρG1ρG2ρG3δG1+G2+G3,0

+u(k0)
∑

G1,G2,G3,G4

ρG1ρG2ρG3ρG4δG1+G2+G3+G4,0,

where τG = τ + κ(G2 − k2
0)

2 and V is the system volume.
The existence of the third order term leads to the

first-order transition, although the transition already has
a fluctuation-induced first-order character. Here we note
that the description of crystallization in the wave number
space is motivated by a physical picture that crystalliza-
tion is due to “translational ordering”.

Alexander and McTague [70] assumed that the isotrop-
ic component dominates the quartic term. Under this as-
sumption, the free energy fρ is minimized by a set of ρGi

which maximizes the amplitude of the third order term.
Then they considered ±Gi parallel to the edges of a tri-
angle, an octahedron (tetrahedron), and an icosahedron.
We can add to this list a tetrahedral bi-pyramid and an
idealized pentagonal bi-pyramid (see also [71–73]). These
corresponds to 2D hexagonal lattice (2Dhex), bcc, icosahe-
dral edge model (ieqc), 3D hexagonal lattice (3Dhex), and
idealized closed packing of tetrahedra (ideal), respectively.
The result is fbcc

ρ < f3Dhex
ρ < f ideal

ρ < f2Dhex
ρ < f ieqc

ρ .
This leads to the conclusion that bcc is most favoured
whereas icosahedral edge model quasicrystalline ordering
is least favoured.

This conclusion is a direct consequence of the fact that
the lowest order term of symmetry selective nature in the
free energy (eq. (11)) plays a major role in the earlier
stage of growth of density fluctuations. However, we argue
below that there may be an additional important selection
rule from the constraint of dense packing or directional
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bonding, under which crystallization usually takes place
(except for a system interacting with rather long-range
repulsions).

For example, we need an additional mechanism stabi-
lizing icosahedral order to explain the formation of icosa-
hedral crystals. Introduction of bond orientational order-
ing is one natural resolution [61,73]. Below we argue that
bond orientational order may play a crucial role not only
in quasicrystal formation, but also in crystallization and
glass transition in general.

2.3.3 Multiple types of bond orientational ordering in liquid

In the above, we consider only translational ordering.
Partly because translational ordering automatically ac-
companies orientational ordering, the importance of the
latter has been overlooked in theories of solidification for
a long time despite the recognition of its importance in
80s [62,63,74–78,61,73]. On the other hand, orientational
order has often been used in simulations to detect crys-
tal order (see, e.g., ref. [79]). The liquid-solid transition
accompanies the breakdown of both translational and ro-
tational symmetry. Here we argue that orientaional order
is crucial for our understanding of the state of liquid and
the phenomena related to the liquid state such as glass
transition and crystal nucleation.

We stress that translational ordering is global in the
sense it is described by periodic modulation with wave
vectors G, whereas bond orientational ordering can be
defined locally around a particle. So their origins are es-
sentially different. We emphasize that crystal nucleation
is initiated from a small nucleus where translational order
that is expressed as the Fourier components in the wave
number space is not well developed yet. Obviously, di-
rectional bonding such as covalent and hydrogen bonding
selects a special local symmetry, which can also be rep-
resented by bond orientational order. Bond orientational
ordering also originates from the geometrical constraint
from dense packing of disks or spheres which interact with
hard-core interactions: the excluded-volume effects. For
2D hard disk systems, for example, the most probable
number of nearest neighbour particles is 6 and thus the
relevant bond orientational order is represented by hexatic
order parameter. This example tells us that bond orien-
tational order should always play an important role in a
densely packed state, in which crystallization usually takes
place.

We argue that the relevant order parameters for de-
scribing glass transition is QCRY whose symmetry is
consistent with the equilibrium crystal, and bond ori-
entational order QLFS which has a symmetry of locally
favoured structures. QCRY and QLFS are driven by parts
of interparticle interactions compatible to the equilibrium
crystal and those incompatible to it, respectively. In gen-
eral, there can be more than two bond order parameters
relevant to crystallization and vitrification, but for sim-
plicity we stick to the simplest case.

Bond orientational order parameters phenomenologi-
cally represent many-body particle correlations in a natu-

Fig. 3. (Colour on-line) A snapshot of 2D spin liquid in a
supercooled state. Red particles have crystal-like bond orien-
tational ordering (more specifically, antiferromagnetic order),
which plays a crucial role in glass transition and crystallization,
whereas blue particles are locally favoured structures with pen-
tagonal symmetry, which plays a primary role in water-type
anomalies and liquid-liquid transition. The latter also plays an
important role in vitrification if it competes with crystalliza-
tion, which is linked to the above bond orientational ordering
(appeared red). Spin on a particle is also shown by an arrow
in this figure.

ral manner. Many-body interactions beyond pair correla-
tions are key to the description of liquid (at low tempera-
tures), where both structure and dynamics are “strongly
correlated”. Furthermore, as will be shown in sect. 6, it is
bond orientational order and not translational order that
triggers crystal nucleation. Thus, frustration or random
disorder effects against crystallization, which lead to vit-
rification, should act primarily on crystal-like bond orien-
tational order. In other words, the disturbance on crystal-
like bond orientational order is enough to make a barrier
for crystal nucleation high and avoid crystallization upon
cooling.

Here we mention the difference in the nature of lo-
cal structural ordering between i) water-like anomalies
and liquid-liquid transition and ii) liquid-glass transition
and crystallization, which will be discussed in more de-
tail later. This can be clearly seen in a snapshot of our
molecular dynamics simulation (see fig. 3). In water-like
anomalies and liquid-liquid transition, the formation of
long-lived locally favoured structures, which can be ex-
pressed by QLFS, plays crucial roles. Here we note that
for water-like liquids at ambient pressure QLFS

∼= QCRY.
The order parameter can be defined as the number density
of locally favoured structures, which expresses the change
in the “quantity”. More precisely, it is the rotationally
invariant scalar parameter made from QLFS. In our view,
water-like anomalies is a consequence of the change in this
scalar order parameter itself and its direct coupling to
the thermodynamic quantities and transport coefficient,
whereas liquid-liquid transition is a consequence of gas-
liquid-like transition of the order parameter due to its co-
operativity. In glass transition and crystallization, on the
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other hand, medium-range structural ordering, which is
expressed by the tensorial order parameter QCRY, plays
important roles under frustration with QLFS or under ran-
dom disorder effects. In this case, the order parameter is
the degree of bond orientational order, which expresses
the change in the “quality” rather than the “quantity”.
The development of bond orientational order is not only
responsible for slow dynamics associated with glass tran-
sition, but also plays an important role in helping crystal
nucleation under its coupling to the density field.

2.3.4 Possible roles of bond orientational ordering in
crystallization, quasicrystal formation, and glass transition

The importance of bond orientational ordering was
pointed out for crystal ordering [74–77] as well as for ori-
entational ordering [78,61,73]. Nelson and Toner [80] also
considered a possible existence of residual bond angle or-
der analogous to that found in a two-dimensional hexatic
phase. They pointed out that a bulk phase with bond ori-
entational order (“cubic” liquid crystal) might be observ-
able in supercooled liquids. For 3D crystallization, how-
ever, there now seems to be a consensus that bond orien-
tational ordering is merely a consequence of translational
ordering and does not play a crucial role in crystallization.
Thus crystallization in 3D has usually been described by
the density functional theory in which the only relevant
order parameter is “scalar density”.

To illustrate the importance of bond orientational or-
dering, here we consider the problem of quasicrystal for-
mation as an example. Since icosahedral ordering is least
favoured according to the above-mentioned Alexander-
McTague argument, the question here is what physical
mechanism makes icosahedral ordering more favourable
than other crystalline structures. There were a few ap-
proaches to the theoretical description of quasicrystal for-
mation from the standpoint of density ordering. Bak [81],
Mermin and Troian [82], and Kalguin et al. [83] consid-
ered this problem on the basis of the Landau theory of
solidification formulated by Alexander and McTague [70].
In order to bypass the original conclusion that a bcc struc-
ture should be generally favoured (see above), they either
include higher-order terms or an additional component to
the density.

Unlike these approaches, Jaŕıc [73] proposed to intro-
duce a bond orientational order parameter which tends
to stabilize the quasicrystalline phase. He provided an in-
teresting view of quasicrystal formation as an interplay
between orientational order and translational order pa-
rameters (see also refs. [80,61]).

We argue that theories of crystallization solely based
on translational ordering miss important physical con-
straints coming from excluded-volume effects under dense
packing and/or directional interactions, both of which lead
to local bond orientational ordering. This is particularly
important in the nucleation stage of crystal, where there
is no well-developed translational order yet. We propose
to describe crystallization by combining two types of or-
derings, positional ordering and bond orientational order-
ing. Densely packed spherical particles with the same size

usually possesses 12 nearest neighbours in 3D. So natural
bond orientational order should be associated with face-
centred-cubic (fcc), hexagonal-closed-packed (hcp), and
icosahedral (ico) symmetries (see below). The fcc and hcp
order is represented by a combination of Q6m and Q4m,
whereas ico order is by Q6m ordering (involving no Q4m

ordering).
Now we consider couplings between orderings of ρ and

Q. The lowest-order coupling between Q and ρ should
be given by the rotationally and translationally invariant
energy [61,73]:

Fint =
∫

dq
∑

l,m

αl(q)
∫

d2q̂ QlmY ∗
lm(q̂)ρ(q̂)ρ(−q̂). (12)

Up to the lowest order, ρ is not coupled linearly to Q, and
ρ(q)ρ(−q) is coupled to it. Accordingly, the equilibrium ρ
need not have the symmetry of the equilibrium Q. This
particular type of coupling leads to an asymmetric cou-
pling between the orderings. If the translational ordering
temperature Tρ is higher than the bond orientational or-
dering temperature TQ then, because the Q-ρ interaction
is linear in Q, the ordering of ρ at Tρ will necessarily in-
duce an ordering in Q. This seems to justify the theory
based on the density field alone, but which may not be so
as we will see later. On the other hand, if TQ > Tρ then,
because the Q-ρ interaction is quadratic in ρ, the order-
ing of Q at TQ will have the effect of renormalizing the
quadratic coupling without necessarily inducing an order-
ing of ρ. Jaŕıc proposed that this case of TQ > Tρ should
correspond to quasicrystal formation [73].

In ordinary 3D crystallization, Tρ > TQ. The free en-
ergy of the equilibrium crystal itself can be expressed
by the scalar density (or, translational) order parameter
alone. However, it does not necessarily mean that bond
orientational order does not play any role in crystalliza-
tion. Rather it plays a crucial role in a supercooled state as
well as in the process of crystal nucleation (see sect. 6). Be-
low we explain how this becomes possible. Due to a rather
strong first-order nature of liquid-solid transition, a sys-
tem can enter into a long-lived metastable state, where a
liquid-glass transition can take place if the temperature is
cooled fast enough for a system to bypass crystallization.
In this branch, thus, we may practically forget the order-
ing of ρ even for T < Tρ until crystal nucleation starts.
Because of strong first-order nature of the translational or-
dering, there is little growth of density fluctuations, whose
amplitude is basically determined by the isothermal com-
pressibility KT . So the only remaining ordering is that of
Q. For 3D hard spheres, for example, bond orientational
ordering towards fcc/hcp develops and competes with that
towards ico, which leads to frustration [35,84,24]. A form
of the Landau-type free energy associated with tensorial
bond orientational ordering with translational and rota-
tional invariance can be found, e.g., in refs. [73,85,72].
For simplicity (see also the speculative reasoning below),
we consider the following free-energy form associated with
(scalar-like) bond orientational ordering Q:

FQ =
∫

dr

(
ctQ2+I3(Q)+O(Q4)+

1
2
K(|∇Q|)2

)
+ . . . ,
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where c is a positive constant, t is the reduced tempera-
ture t̃ = 1/φ− 1/φb

0 (or t̃ = T −T b
0 ), and “. . . ” represents

frustration originating from competing bond orientational
orderings (e.g., QCRY vs. QLFS), internal frustration (this
is the case for icosahedral order [61]), and/or random dis-
order effects. Here QCRY is compatible to the symmetry
of the equilibrium crystal, whereas QLFS is incompati-
ble to it, as described above. Here φb

0 (or T b
0 ) is the bare

transition volume fraction (or temperature). Even though
the third order invariant I3 is suggestive of the first-order
nature of the transition, the transition might be almost
continuous. Frustration effects originating from compet-
ing QCRY and QLFS orderings and/or random disorder
effects due to polydispersity may change the nature of the
transition from a continuous (characteristic to a tensorial
order parameter) to a discrete Ising symmetry (character-
istic to a scalar order parameter) [10]. We speculate that
renormalization of frustration effects changes the symme-
try of the transition from the continuous to the discrete
Ising symmetry and also shifts the critical point from φb

0
(or T b

0 ) to φ0 (or T0), although this should be carefully
checked. We also emphasize that frustration effects may
not only change the type of ordering, but also lead to ex-
otic critical phenomena accompanying the growing acti-
vation energy towards the hypothetical critical point (see
sect. 5.3.9).

The total free energy Ftotal may then be given by the
sum of translational ordering, local and global orienta-
tional ordering, and the couplings between them:

Ftotal = Fρ + FQ + Fint. (13)

In the above, however, we need a special care for avoiding
double counting. This may be done with a proper projec-
tion procedure.

Here we note that there are new important effects of
bond orientational ordering, which have so far not been
considered in describing liquid-glass transition: 1) ther-
modynamic effects of short-range bond ordering, which
can be considered on the basis of the simpler free energy
fS (see eq. (5)), 2) random field effects of Q (or, S(r)) on
crystallization (long-range translational and bond orien-
tational ordering), and 3) long-range crystalline (or qua-
sicrystal) ordering consistent with the symmetry of S
order.

Later, we consider problems of thermodynamic and
kinetic anomalies of water-type liquids, liquid-liquid tran-
sition, liquid-glass transition, and crystallization, focusing
on these three effects 1)-3).

2.3.5 Case of hard spheres

To illustrate the importance of bond orientational or-
dering, here we briefly discuss why fcc, hcp and ico
bond orientational orderings are important in a super-
cooled hard-sphere-like liquid state [10,37,36,11,12]. As
described above, the driving force of bond orientational
ordering is the constraint due to dense packing for hard
spheres. So a minimal structural unit is a particle and its

6 nearest neighbour particles for 2D, whereas a particle
and its 12 nearest neighbour particles for 3D. For 2D, it is
obvious that hexatic order is the only key bond order pa-
rameter. For 3D, it is not so obvious as for 2D. However,
isolated structures composed of one central and 12 sur-
rounding particles are only fcc, hcp, and icosahedral pack-
ings, which are the most probable candidates of preferred
bond orientational order in a supercooled hard-sphere liq-
uid. The fcc and hcp order can extend in space without any
internal frustration, whereas ico intrinsically suffers from
internal geometrical frustration [62,61,63] since icosahe-
dron cannot grow further and fill up the space. Further-
more, there is an intrinsic symmetry mismatch between
crystal-like bond orientational order (fcc and hcp) and
icosahedral order, which can be a source of frustration
against crystallization.

Here we stress that bcc symmetry provides only 8
nearest neighbour particles and thus it should not be
favoured under a constraint of dense packing, although
it is favoured by the cubic term in the Landau expansion
of the density. Indeed, bcc crystal is not stable for hard
spheres. We propose that this is the reason why bcc struc-
tures are not seen in hard-sphere systems, in contrast to
the prediction of the Alexander-McTague theory [70]. Al-
though hard-sphere systems might be out of the range of
the applicability of this theory, we can say that this fea-
ture coming from local symmetry selection due to packing
constraint is not taken into account properly in theories
based on translational ordering alone.

The constraint from dense packing becomes weaker for
systems of softer interactions. This may explain why bcc
structures are more often seen in systems of softer inter-
actions (see, e.g., [86–89]).

2.4 A few pieces of evidence supporting our scenario
of crystallization

2.4.1 Importance of bond orientational order in
solidification of two-dimensional (2D) systems: Its
implication on 3D crystallization

To illustrate important roles of bond orientational order
in crystallization, we consider liquid-solid transition in 2D
systems. For 2D hard disks, it is widely accepted that
liquid-solid transition sequentially takes place in the or-
der of bond orientational ordering and translational or-
dering upon densification. This is known as the Kosteritz-
Thoules-Halperin-Nelson-Young scenario [62]. The nature
of the transition (second order or first order) is still a mat-
ter of debate, but this does not affect the importance of
bond orientational order itself. We note that a recent sim-
ulation study by Bernard and Krauth [90] provides the
following answer to this long standing problem: The tran-
sition from the liquid to hexatic phase is actually weak
first-order transition whereas that from the hexatic to
solid phase is continuous. Bond orientational order can
be expressed by the distribution of bonds jointing a parti-
cle located at r to its nearest neighbours [62]. For 2D hard
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disk systems, the relevant bond orientational order is the
(Mermin) hexatic order parameter, as described above.

This example of 2D ordering tells us that bond ori-
entational order should always play an essential role in a
densely packed state, in which crystallization usually oc-
curs. 3D systems should not be exceptional.

As mentioned above, we argue that in ordinary 3D sys-
tems, the ordering point of bond orientational order is lo-
cated below that of translational order and thus the former
is hidden behind the latter [11,12]. This is a consequence
of the fact that translational ordering automatically ac-
companies bond orientational ordering. However, when we
consider structural fluctuations in a liquid and/or the ki-
netic process of crystal nucleation, bond orientational or-
der always plays an important role as will be shown later.
Quasicrystal may be an exception for the above-mentioned
order of the two types of ordering: For this case, the or-
dering point of bond orientational order is located above
that of translational order, as mentioned above, and thus
long-range bond orientational ordering takes place before
translational ordering takes place [73,35,11,12].

2.4.2 Plastic crystals, liquid crystals, and quasicrystals

The importance of (bond) orientational ordering is also
supported by the presence of plastic crystals and liquid
crystals as intermediate phases between a liquid and a
crystal phase. Plastic crystals have positional order, but
without orientational order, whereas liquid crystals have
orientational order, but without positional order. This in-
dicates that the two types of orderings both play crucial
roles in the ordering from an isotropic liquid to an ordi-
nary crystal. So it is natural to consider that both posi-
tional and bond orientational ordering play crucial roles in
a liquid-crystal transition in general. As discussed above,
the presence of quasicrystals can also be naturally ex-
plained by the two order parameter model.

2.5 General importance of local structural ordering in
liquid

Our picture is based on the recognition of the general
importance of local structural ordering in liquid. The
gas phase does not have any structural order. The solid
phase has extended translational order, for which k-space
(Fourier-space) analysis and representation are very use-
ful. We argue, on the other hand, that local or mesoscopic
structural ordering is essential for the liquid phase, which
has so far not been taken seriously as the important gen-
eral feature of liquid. With a decrease in temperature,
starting from a random disorder gas state, local order ap-
pears in a liquid state and then mesoscopic order develops
towards the lower stability limit of the liquid phase. Even-
tually extended translational order develops upon crys-
tallization. The liquid-crystal transition accompanies the
breakdown of both translational and rotational symmetry.
We note that local and mesoscopic order developing in a
liquid is associated with orientational order and not with
translational order.

Such local or mesoscopic order is rather difficult to
access by scattering measurements because of its local na-
ture as well as its orientational (non-translational) nature.
Although real-space analysis is very powerful, it is not ap-
plicable to most of ordinary liquids. This may be one of
the reasons why the understanding of the liquid phase has
been far behind that of the gas and solid phase. Direct
measurements of bond orientational order in real liquids
are highly desirable. Recent development of X-ray cross
correlation spectroscopy may be promising from this re-
spect [91,92].

3 Thermodynamic and kinetic anomalies
of water-type liquids

Liquid water exhibits unusual thermodynamic behaviour,
which is very much different from that of ordinary liq-
uids [18,40,1,42,46,20]. The most striking anomaly is the
decrease of the density ρ upon its freezing at 0 ◦C and
the density maximum at 4 ◦C. Isothermal compressibil-
ity KT and heat capacity at constant pressure CP also
show unusual temperature dependences. Both quantities
steeply increase on cooling. In addition to the thermody-
namic anomaly, the viscosity η also shows anomalous non-
Arrhenius behaviour. Furthermore, at low temperatures η
decreases with an increase in pressure up to 2 kbar, which
is markedly different from the behaviour of ordinary liq-
uids, whose η monotonically increases with pressure.

These anomalous thermodynamic and dynamic be-
haviour of water has extensively been studied both exper-
imentally and theoretically for a long time. Many mod-
els of water have been proposed to explain the water’s
anomaly, focusing on the unique features of hydrogen
bonding. Furthermore, various concepts have been pro-
posed to explain the anomalous behaviour of water, fo-
cusing on both the thermodynamic anomaly and the low-
temperature phase behaviour of liquid water [18,40,1,42,
46,20]: a) a stability-limit conjecture, [93], b) a second-
critical-point scenario (see e.g., refs. [40,94,95]), and c) a
singularity-free scenario [96,97]. Scenario a) assumes the
existence of a retracting spinodal curve and attributes
the thermodynamic anomaly to proximity to the spinodal
curve. Scenario b), on the other hand, assumes the exis-
tence of a line of first-order transitions between two types
of liquid water (low-density and high-density water), ter-
minating at a metastable critical point, and attributed the
thermodynamic anomaly to critical phenomena associated
with the hidden critical point. Finally, scenario c) predicts
that the thermodynamic quantities exhibit extrema but
no divergence. Scenarios a) and b) predict the divergence
of the thermodynamic quantities due to the thermody-
namic singularity. In scenarios a) and b), the anomaly
of the thermodynamic and dynamic quantities has often
been analysed with assuming the power law divergence,
ε−γ , where ε = (T − Ts)/Ts (Ts: mean-field spinodal tem-
perature) and γ is a critical exponent, and found to be
well described by it. However, it should be noted that the
critical exponents are often treated as adjustable parame-
ters and no hyperscaling relations between the exponents
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have been found so far, unlike the case of the typical crit-
ical phenomena. Furthermore, we cannot approach to the
mean-field spinodal temperature Ts so closely because ho-
mogeneous nucleation of ice crystals takes place far above
Ts. Thus, ε > 0.05 in most cases and there has been no
convincing evidence of the divergence of the thermody-
namic quantities at a critical temperature. We note that
the thermodynamics of water has recently been studied in
detail on the basis of critical phenomena [95]. Finally, sce-
nario c) predicts no divergence of the physical quantities.

Focusing on the temperature dependence of hydrogen
bonding, many rather complicated functional forms have
been proposed to describe the anomalous behaviour of the
thermodynamic quantities. Despite these considerable ef-
forts, however, there has so far been no consensus on which
of these three types of scenario is primarily responsible for
the above-described anomaly of water or whether we need
a new scenario or not [42]. The only consensus is the im-
portance of hydrogen bonding. This situation is partly due
to the lack of an “intuitively appealing” physical model of
water, which provides a “simple” analytical prediction for
the water’s anomaly. Here we explain how the thermo-
dynamic and kinetic anomalies of water-type liquids can
be explained in the framework of our two-order-parameter
model.

3.1 What makes water-type liquids so different from
ordinary liquids?

First we consider what makes water so special among
“molecular” liquids. We pointed out [25,26,22] that wa-
ter is the only molecular liquid, for which local bond ori-
entational ordering is compatible with a global crystallo-
graphic symmetry: The locally favoured tetrahedral struc-
ture of water stabilized by hydrogen bonding is consistent
with the crystallographic symmetry of hexagonal ice Ih
and cubic ice Ic. It is important to recognize that forma-
tion of a tetrahedral structure stabilizes hydrogen bonding
with a help of local symmetry in a “cooperative” manner.
We argue that all the thermodynamic anomalies of wa-
ter originate from i) this dominance of bond orientational
ordering below a crossover pressure Px (∼ 2 kbar), where
the melting point of ice crystals has a minimum, and ii) an
unusually large positive value of Δv. Below Px, the crys-
tallization is due to bond ordering, while above Px it is
due to density ordering as in ordinary liquids (see fig. 4).
This gives a natural explanation for the unusual pressure
dependence of the melting point of ice crystals, including
its minimum around 2 kbar. We propose that ice Ih is S-
crystal, long-range ordering of S, while high-pressure ices
are ρ-crystals [25,26,22]. The V-shaped T -P phase dia-
gram of water-type liquids is just a manifestation of the
Clausius-Clapeyron relation.

By using this specific shape of the phase diagram as a
fingerprint [22], we classified five elements Si, Ge, Sb, Bi,
and Ga into water-type atomic liquids. Similarly, some
group III-V (e.g., InSb, GaAS, and GaP) and II-VI com-
pounds (e.g., HgTe, CdTe, and CdSe) can also be classi-
fied into water-type liquids. As described below, our model

Fig. 4. (Colour on-line) P -T phase diagram of water-type liq-
uids including water itself and water-type atomic liquids (Si,
Ge, Bi, Sb, and Ga).

provides us with simple analytical predictions for the ther-
modynamic and dynamic anomalies of these water-type
liquids [22].

3.2 Thermodynamic anomalies of liquid water

Here we consider a simple two-state model of liquid, which
corresponds to the limit of weak cooperativity in our two-
order-parameter model [25,26]. We first estimate how the
average fraction of locally favoured structures, S̄, increases
with a decrease in T . From the condition ∂f(S)/∂S = 0
(see eq. (5)), S̄ can be obtained as

S̄ =
gS

gρ
exp(β(ΔE − PΔv))

1 + gS

gρ
exp(β(ΔE − PΔv))

, (14)

where β = 1/kBT . In the above, we assume J = 0 for
simplicity. For J �= 0, the cooperativity plays an impor-
tant role in inducing a liquid-liquid transition [16,9] (see
above). Here ΔE = Eρ − ES and Δv = vS − vρ. Ei

and gi are the energy level and the number of degenerate
states of i-type structure, respectively. i = ρ corresponds
to normal liquid structures of water, while i = S to locally
favoured structures (see fig. 2). The validity of eq. (14) was
confirmed by our numerical simulations of 2D spin liquid
(spherical particles interacting with special anisotropic po-
tential favouring pentagon geometry; see fig. 1) [24] (see
fig. 5). In this system, S is defined as the number density
of the pentagon structures.

The uniqueness of a locally favoured structure and the
existence of many possible configurations for normal liq-
uid structures lead to the relation gρ � gS . Then, S̄ can
further be approximated as

S̄ ∼ gS

gρ
exp[β(ΔE − ΔvP )], (15)
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Fig. 5. (Colour on-line) The number of locally favoured struc-
tures (pentagons in fig. 1) as a function of the temperature T
in our numerical simulations of spherical particles interacting
with special anisotropic potential for ΔE = 0.2 (for the de-
tails, see [24]). We call this liquid “2D spin liquid”. The solid
curve is the fitting of eq. (14). The agreement is satisfactory,
showing the relevance of the two-state model.

We stress that this relation should hold even for a non-zero
J if S̄ 	 1 [25,26].

Here it is worth noting that the above prediction of
our two state model on the behaviour of S was supported
by numerical simulation studies of SPC/E water model by
Appignanesi et al. [98,99]. It was quite difficult to unam-
biguously determine both the presence and the fraction
of each kind of water species in terms of numerical simu-
lations. They overcome this difficulty by combining a lo-
cal structure index with potential-energy minimisations.
Namely, they combined the characterization of tetrahe-
dral structural order parameter with the identification of
the inherent structure. This allowed them to estimate the
fraction of the locally favoured structures as a function of
temperature.

According to the above picture, the unusual decrease
in ρ upon cooling below 4 ◦C in water can simply be ex-
plained by an increase in the number density of locally
favoured structures, S̄, upon cooling. The specific volume
vsp and the density ρ are, respectively, given by

vsp(T, P ) = vB
sp(T, P ) + ΔvS̄, (16)

ρ(T, P ) ∼ ρB(T, P ) − ρB(T, P )
Δv

vsp
S̄, (17)

where ρB(T, P ) = M/vB
sp(T, P ) (M : molar mass). Note

that the background contributions vB
sp and ρB depend al-

most linearly on T as for those of ordinary liquids. Then,
KT = − 1

vsp
(∂vsp

∂P )T can straightforwardly be calculated

from eq. (16) as

KT = − 1
vsp

(
∂vB

sp

∂P
)T − 1

vsp
(
∂Δv

∂P
)T S̄

+β
Δv2

vsp

S̄

1 + gS

gρ
exp(β(ΔE − PΔv))

. (18)

Fig. 6. Temperature dependence of density for various pres-
sures. The data sets correspond to P = 1, 100, 200, 300, 400,
500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500,
4000, 4500, 5000, 5500, 6000, and 6500 bar, from bottom to
top. The solid curves are the theoretical fittings, while the gray
curves are the background parts. This figure is reproduced from
fig. 3 of [26].
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Fig. 7. The temperature dependence of the refractive index n
of water at ambient pressure. The solid curve is composed of
the contribution from the background part (dotted line) and
that of bond ordering given by the Boltzmann factor.

For a case of S̄ 	 1, this relation can further be simplified
as

KT = − 1
vsp

(
∂vB

sp

∂P

)

T

+
1

vsp

[
−(

∂Δv

∂P
)T + βΔv2

]
S̄.

(19)
The anomalous increase of KT upon cooling can thus be
explained by the following two mechanisms: a) A decrease
in T increases the population of locally favoured struc-
tures, which may be softer than normal liquid structures.
b) More importantly, the ability (or the degree of freedom)
of the transformation from locally favoured structures to
normal liquid structures upon a pressure increase provides
softness to a system. With an increase in pressure, the
anomaly of KT upon cooling becomes weaker, reflecting
the decrease in the population of locally favoured struc-
tures, S̄.
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Here we show an example of the fitting of eq. (17) to
the data of T , P -dependences of density ρ(T, P ) in fig. 6.
The agreement is satisfactory. We also show a similar fit-
ting using the same S̄ for the refractive index n in fig. 7.

The anomalous increase in CP upon cooling can also
be explained as follows. The locally favoured structure
has a unique configuration and the associated degrees of
freedom are much smaller for it than for the normal liquid
structure of water. Thus, the entropy σ decreases upon
cooling, reflecting an increase in S̄, or short-range tetra-
hedral ordering:

σ = σB(T, P ) − ΔσS̄, (20)

where σB is the background part of the entropy associated
with normal liquid structures. Thus, CP = T (∂σ/∂T )P

should increase upon cooling as

CP = T

(
∂σB

∂T

)

P

− T

(
∂Δσ

∂T

)

P

S̄

+βΔσ(ΔE − PΔv)
S̄

1 + gS

gρ
exp(β(ΔE − PΔv))

.

(21)

For case of S̄ 	 1, this relation can further be simplified as

CP = T

(
∂σB

∂T

)

P

+
[
−T

(
∂Δσ

∂T

)

P

+ βΔσ(ΔE − PΔv)
]

S̄. (22)

The relevance of these predictions was confirmed for
water [100,25,26] and water-like atomic liquids [22]. The
comparisons of eqs. (18) and (21) with the data of KT

and CP of water, respectively, can be found in refs. [100,
25,26]. The basic physical picture was also supported by
numerical simulations by Errington and Debenedetti [66],
which showed how the two order parameters behave as a
function of T and P for liquid water. Recently it was also
shown that the steep decrease in the entropy upon cooling
is due to the development of tetrahedral order [101]. This
means that local structural ordering is a key to the water
anomalies. Furthermore, the link between structure, en-
tropy, and diffusivity has also been clearly demonstrated
for model waters [102]. This work also showed that water
anomalies occur at much lower pressure than Px. In our
view this is related to the pressure dependence of S̄(T, P )
(see eq. (14)).

3.3 T-P dependence of the water anomaly deduced
from the above two-state model

In the above, we obtain the T, P -dependence of S̄(T, P )
(see fig. 8 for the T dependence) from the fitting of our
model to the experimental data [25]. Using this result,
we can calculate the T, P -dependence of S̄, the specific
volume v(T, P ), the density ρ(T, P ), and the isothermal

Fig. 8. Temperature dependence of S̄ (see the text on its def-
inition) determined by the fitting of our prediction to the ex-
perimental data of ρ, KT , and CP at various pressures. Open
squares, triangles, and circles represent, respectively, data on
ρ, KT , and CP at ambient pressure. All the other symbols are
data at higher pressures. The dashed line is our theoretical
prediction for S̄. The values of S̄ determined from the 23 sets
of data of “bulk” liquid water are all collapsed on the master
curve, which is described by the single Boltzmann factor. The
figure is reproduced from fig. 1(b) of [25]. See also fig. 9, which
shows the T, P -dependence of S.

compressibility KT (T, P ) for liquid water. Here we set J =
0 for simplicity. The results are shown in figs. 9, 10, 11,
and 12. Here it is worth noting that the cooperativity (i.e.,
non-zero J), if it exists, may lead to considerable changes
of the behaviours of these quantities in a low temperature
region.

3.4 Thermodynamic anomaly and fluctuations

Herewe consider the origin of the thermodynamic anomaly
of water, using the anomaly of the isothermal compress-
ibility as an example. Using statistical mechanics, macro-
scopic observables can be expressed by molecular-level
properties in general. Here we express the isothermal com-
pressibility KT in terms of density fluctuations as

kBTKT /V = 〈(N − 〈N〉)2〉/〈N〉2, (23)

where N is the number of molecules and V is the sys-
tem volume. This can further be expressed as a spatial in-
tegral involving the two-point density-density correlation
function as follows [103]:

ρkBTKT = 1 + ρ

∫
[g(r) − 1]dr, (24)

where ρ = 〈N〉/V is the mean number density, and g(r)
is the molecular pair correlation function. The integral in
this last expression covers all space. This relation tells us
that the isothermal compressibility is linked to deviations
of g(r) from its asymptote unity. There can be two origins
for such deviations: 1) short-range order in the arrange-
ment of molecules comprised in the liquid and 2) long-
ranged density fluctuations, which emerge near a critical
point.
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Fig. 9. (Colour on-line) T, P -dependence of S̄ for water.
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Fig. 11. (Colour on-line) T, P -dependence of ρ for water.
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Fig. 13. (Colour on-line) Schematic figure showing the dif-
ference in the liquid-state trajectory on the ρ-S plane as a
function of T for water at ambient pressure and an ordinary
liquid.

In the case of water, we argue that the anomalous in-
crease of KT primarily comes from short-range tetrahe-
dral ordering. There are a few reasons supporting this.
The structure factor S(k) is given by [103]

S(k) = 1 + ρ

∫
[g(r) − 1] exp(ik · r)dr. (25)

Although there is not a firm consensus, there is no clear in-
dication of long-wavelength density fluctuations in small-
angle scattering experiments. More importantly, the den-
sity anomaly itself cannot be explained by long-range den-
sity fluctuations, but can naturally be explained by short-
range tetrahedral ordering, as described above. These
facts seem to support our scenario.

3.5 Trajectories of the state of water in the
two-order-parameter plane

Here we show a schematic figure representing the trajecto-
ries of the two averaged order parameters ρ and S for both
a water-type liquid and an ordinary liquid in fig. 13 (see
also ref. [100]). This illustrates the importance of having at
least the two order parameters to specify the macroscopic
state of water properly. A similar behaviour was also re-
ported by Errington and Debenedetti [66] on the basis of
numerical simulations. See also ref. [102] for a recent more
detailed study.

3.6 Are there key temperatures associated with water
anomalies?

It is well known that at ambient pressure, the density has
its maximum at 4 ◦C, the isothermal compressibility has
its minimum at 46 ◦C, and the isobaric heat capacity has
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its minimum at 35 ◦C. These temperatures are often re-
garded as important temperatures characterizing the wa-
ter anomalies. According to our scenario, however, the ori-
gins of these maxima and minima simply reflect the differ-
ent temperature dependences of the normal background
part and the anomalous part proportional to the Boltz-
mann factor S̄. Although these temperatures are some
measures which can be used to characterize the anomalies,
their locations are determined by the balance between the
normal and anomalous part. So we believe that these tem-
peratures do not have any significant “physical” meaning.

3.7 Relation of our two-state model to so-called
mixture and continuum models

3.7.1 Relation to the mixture models

A mixture model was first proposed by Röntgen [21] to
explain water properties and then developed by many oth-
ers (e.g., [18,104–108]). It was recently applied to a water
problem by Ponyatovsky et al. [94]. Their model regards
water as a mixture of low-density (LDA) and high-density
amorphous ice (HDA) (see also [109]). So it may be more
appropriate to call this type of model a mixture model
rather than a two-state model.

It is worth comparing our model with such a mixture
model to clarify what physical factors are important to
determine the scenario relevant to water’s anomalies. The
most crucial difference between our model and the mixture
model is the value of Δσ. We assume that the difference
in entropy, or the degeneracy of states, between the two
states is very large, which is a consequence of a disor-
dered nature of a normal liquid state and a uniqueness of
a locally favoured structure. We note that normal liquid
structures are also made of water molecules temporally hy-
drogen bonded with neighbouring molecules. The impor-
tant point is that their structural order is still considerably
lower than that of locally favoured structures (gρ � gS).
On the other hand, it is assumed (see, e.g., [94]) that the
difference in the entropy between the two components is
small since it is evaluated from the data of solid-state
amorphous-amorphous (LDA-HDA) transition. In other
words, it is implicitly assumed that both components have
unique structures. Considering that a liquid is in a high
entropy state, our two-state model approach seems to be
more reasonable than a mixture model approach. This
subtle, but important difference leads to a drastic differ-
ence in the physical picture. In our model, S is very small
(S 	 1) at ambient temperature and pressure (see fig. 8),
but in most of other models [107,108,94] S (in our ter-
minology) is almost 1/2 or even higher there and in some
cases the anomaly was ascribed to critical anomaly associ-
ated with the second critical point of LLT (see, e.g., [94]).
In our case, water’s anomalies are explained by an increase
in S with decreasing T : The anomalous parts of physical
quantities such as density are proportional to S and can be
described by the Boltzmann factor at high temperatures
(see eq. (15)) [25,26]. However, because detailed micro-
scopic information on hydrogen bondings in water is not

available, we cannot determine the difference in entropy
between the two states in a convincing matter.

Numerical simulations may provide such information,
but the current situation is still controversial. Recent sim-
ulation results [98,99] seem to be consistent with our sce-
nario where S is rather small. However, we should also
note that the estimate of the fraction of the LDL-like com-
ponent by Cuthbertson and Poole is higher [110]. Further-
more, Matsumoto showed that expansion of water upon
cooling can be explained without invoking any heterogene-
ity [111]. Thus, further studies are necessary to settle this
issue (see below).

Here we mention another reason why we prefer to use
“two-state” rather than “mixture”. This is because a mix-
ture model gives us an impression that a system is com-
posed of A and B component and the order parameter (the
fraction of A) is conserved. In reality, however, the order
parameter should not be conserved: locally favoured struc-
tures are created and annihilated without the constraint
from its conservation. This point is crucial when we con-
sider the nature and the dynamics of water-like anomalies
and liquid-liquid transition [16,9] (see below).

We emphasize that the difference in Δσ leads to the
entirely different scenarios for water’s anomalies, as de-
scribed above. We believe that this problem, which is di-
rectly related to the microscopic structural identification
of normal and locally favoured structures, is a quite im-
portant point to understand the physical origin of water’s
anomalies. Thus, careful studies are desired to elucidate
which scenario is relevant to water. Numerical simulations
are obviously very powerful in identifying locally favoured
structures. Detailed experimental study on the radial dis-
tribution function of water may be very useful to settle this
issue experimentally (see the case of liquid Si described
below).

3.7.2 Relation to the continuum models

Although we explain water anomalies in terms of the two-
state model, we can also interpret our two-state model
as a continuum model [18] by regarding S̄ as the degree
of average tetrahedral order instead of the number den-
sity of locally favoured structures. The same form of the
free energy can be used and the expressions for various
thermodynamic anomalies can be used as they are, if we
assume that the volume and the entropy of water change
in proportion to the degree of average tetrahedral order
S̄. Thus, there is no simple way to distinguish these two
scenarios. Numerical simulations are the most promising
way for this purpose, but there has been no consensus
on this point so far, as described above [98,99,110,111].
We note that for 2D spin liquid [24] and hard-sphere liq-
uids [13], the validity of the two state picture has directly
be confirmed (see, e.g., figs. 1 and 5). Recent X-ray ab-
sorption spectroscopy also suggests the presence of two
distinct structural motifs [112]. The two state picture re-
lies on that there are distinct locally favoured structures
with a specific symmetry and this symmetry is linked to
the drastic reduction of the local free energy. This might
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be related to the possible presence of two types of hydro-
gen bonding [113]. Thus, this problems lies at the heart of
the nature of short-range bond orientational ordering in
liquids.

Finally we point out that a continuum model has a
difficulty in having a first-order liquid-liquid transition,
since within its framework, only a continuous transition
is allowed. This is another reason why we believe the two
state picture is more appropriate. However, further careful
studies are necessary to settle this long-standing issue in
a convincing manner.

3.8 What is the locally favoured structure of water?

Suppose that a two state model is a relevant picture
of liquid water, a key question is then what the locally
favoured structure is. The structure should be associated
with tetrahedral order stabilized by hydrogen bondings.
Furthermore, the locally favoured structure should occupy
a larger specific volume than normal liquid structures. It
is reasonable to assume that the former has rather per-
fect tetrahedral order and has an excluded volume in the
sense that other water molecules cannot penetrate into its
effective volume, whereas the latter has low tetrahedral
order and other molecules can rather easily access the wa-
ter molecule at the centre. This is suggestive of the impor-
tance of the second-nearest-neighbour shell in determining
the locally favoured structures. To confirm the presence of
such a distinct structure and reveal the exact structural
feature, further careful studies on water structure by both
experiments and simulations are highly desirable.

3.9 Kinetic anomalies of liquid water

3.9.1 Viscosity anomaly, its characteristics, and previous
interpretations

In addition to the thermodynamic anomaly of water, the
increase of the activation energy for viscous flow or self-
diffusion upon cooling can also be explained by the in-
crease of S̄. Here we take a standpoint that the dynamic
anomaly of water is “primarily” neither due to critical
phenomena nor due to slow dynamics associated with a
glass transition, but it is due to the existence of locally
favoured structures (short-range ordering), at least in the
temperature region where the bulk water can be super-
cooled.

Before proposing a physical picture that can explain
this unusual behaviour, first we reconsider the statement
that water is a fragile liquid near Tm. This statement gives
us an impression that water is similar to a typical fragile
liquid, but it is probably not appropriate from the follow-
ing reasons:
i) For ordinary fragile liquids, the temperature distance

between Tm and Tg is usually small [17,35]. For wa-
ter, it is ∼ 140K, which is unusually larger compared
to those for typical fragile liquids. Note that for typi-
cal fragile liquids Tm/Tg ∼ 1.3–1.5 whereas for water
Tm/Tg ∼ 2.0.

a

b

Fig. 14. (a) Viscosity anomaly of water at ambient pressure.
The black solid curve is the prediction of eq. (28), whereas the
grey dashed curve is that of the power law with Ts = 228K
∼ −45 ◦C and ν = 1.5. (b) Pressure dependence of viscosity of
water at T = −5.0 ◦C and the fitting curve of our prediction.
As shown here, our scenario well explains both the T and P
dependence of viscosity of water. This figure is reproduced from
fig. 2 of [27].

ii) Bulk water can never be vitrified and always crystal-
lizes below TH. In other words, water is an extremely
poor glass former.

iii) More importantly, the viscosity of water first decreases
with an increase in pressure (or density) [18,114], and
then increases above ∼ 2 kbar (see fig. 14(b)). This
unusual behaviour is markedly different from the typi-
cal behaviour of ordinary liquids that viscosity always
increases with increasing pressure (or density). Such
unusual behaviour cannot be explained by the conven-
tional knowledge about supercooled liquids.

These facts i)-iii) cast a serious doubt on the validity
of the statement that the non-Arrhenius steep increase
of the viscosity observed around Tm is a manifestation of
the fragile nature of water, which implicitly assumes that
water is a glass former in the usual sense. We note that
glassy slow dynamics of ordinary glass formers always be-
comes slower with an increase in pressure. The question
that should be answered first is, thus, whether the viscos-
ity anomaly of water near Tm is caused by slow dynamics
associated with a glass transition or by other origins. The
dynamic anomaly of the viscosity η and the structural
relaxation time τ in water has often been explained by
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the mode-coupling theory (MCT) [1,115–117], the model
based on the existence of a critical-like end point of the
hydrogen-bond network formation process [118,93], or the
existence of a retracting spinodal curve [93]. All these
models predict the power law anomaly,

η ∝ (T − Ts)−ν , (26)

where Ts is a critical temperature, ν is the critical expo-
nent, and Ts was determined as 228K at ambient pres-
sure [1,118,93]. Figure 14(a) shows such a fitting, which
well describes the viscosity anomaly. To confirm this type
of power law divergence, however, we need to approach
very closely to Ts. Since Ts is hidden by crystallization in
reality (see fig. 14(a)), however, this scenario cannot be
confirmed in an unambiguous manner. More importantly,
it should be noted that in a real system such a sharp
MCT singularity is usually smeared out by thermal fluctu-
ation effects, which are considered to activate thermally-
activated hopping processes. For the scenarios based on
critical phenomena, we note that the viscosity anomaly
associated with critical phenomena is usually logarithmic
divergence or power law divergence with a very small ex-
ponent (∼ 0.04) [26] (see below). This is not consistent
with the above strong power law divergence.

We point out some additional problems associated
with these scenarios. 1) The anomalous pressure depen-
dence of the viscosity is ascribed to the pressure depen-
dence of Ts(P ) and ν(P ). This pressure dependence itself
is, however, rather difficult to explain in a natural manner
within their own theoretical frameworks. 2) There seems
to be no obvious justification for the applicability of the
mean-field MCT for a system of finite-range interactions.
Or, why does it work so well only for water? It is widely
believed that such divergence near the mode-coupling Tc is
not observed in ordinary glass formers, as explained above.
3) Furthermore, the absence of the activation process in
a molecular liquid with hydrogen bonding above Ts seems
not to be reasonable. In other words, there should be a
background part in the viscosity, but the fitting is usually
made while implicitly assuming its absence. 4) More im-
portantly, it may be difficult for these scenarios to explain
the above facts i)-iii). Thus, it is worth reconsidering the
origin of viscosity anomaly from a different standpoint.

3.9.2 A two-order-parameter description of the viscosity
anomaly

On the basis of our two-order-parameter model of liquid,
we proposed that the viscosity anomaly of water around
Tm may be explained as follows [25–27]. In usual liquids
the activation energy required for viscous flow or diffusion
is associated with the creation of a hole, or the disruption
of local interactions with its neighbouring molecules. The
existence of the unique activation energy for this process is
the origin of the Arrhenius behaviour. Under the existence
of LFS, however, an additional activation energy, ΔEa,
is required for molecules participating these structures to
flow. Here we note that the lifetime of LFS, which is longer

than that of NLS, is still quite short (	 μs) and thus a
liquid cannot be regarded as a mixture of stable NLS and
LFS. Thus, the activation energy should be averaged over
all molecules participating and not participating LFS, and
thus is estimated as

Ea(T, P ) = EB
a (P ) + ΔEaS̄(T, P ), (27)

where EB
a (P ) is the background activation energy for nor-

mal liquid structures without LFS’s. The T, P -dependence
of viscosity is thus predicted as [26]

η(T, P ) ∝ T 3/2 exp[βEa(T, P )]. (28)

We note that this expression may be commonly used in
the continuum model if we accept that the extra activation
energy is proportional to the degree of average tetrahedral
order S̄, although we believe that the two-state model is
more appropriate than the continuum model as explained
above.

We made fittings of eq. (28) to the T -dependence of
viscosity and the results are shown in fig. 14. We obtain
EB

a (P ) = [1832 + (0.37 − 0.0002 × (T/K)) × (P/bar)] K
and ΔEa = 2612K. Here we emphasize that we used the
same S̄, which we used to describe the thermodynamic
anomalies of water. Since our prediction and the MCT
one equally well describe it, we cannot judge solely from
this comparison which scenario is more reasonable. How-
ever, we stress that our scenario can explain the unusual
P -dependence of viscosity, or fact iii), in a natural man-
ner. As shown in fig. 14(b), it is well explained by the
competition between the background part, EB

a (P ), which
is a linearly increasing function of P as often seen in or-
dinary liquids, and the part related to LFS, ΔEaS̄(T, P ),
which is an exponentially decreasing function of P (see
eq. (15)). In our model, furthermore, all the unusual T, P -
dependence of density, compressibility, heat capacity, and
viscosity can be described solely by the T, P -dependence
of the common Boltzmann factor, S̄(T, P ) (see eq. (15))
in a unified manner [25,26] (see also fig. 8).

It is worth mentioning that the strong correlation be-
tween structural entropy and diffusion kinetics was estab-
lished for water-type liquids [119,120]. This suggests the
kinetic anomaly can be explained by structural ordering
and the resulting loss of structural entropy, which seems
consistent with our scenario. We note that the fact that
the viscosity anomaly becomes less pronounced at higher
pressure is not consistent with a scenario that the viscosity
anomaly is induced by the second critical point, provided
that the critical point is located at a positive pressure.

Finally we mention a very recent work by Qvist et
al. [121] on the rotational dynamics of water by combining
nuclear magnetic resonance measurements with molecular
dynamics (MD) simulation. They showed that the origin
of the super-Arrhenius temperature dependence of the ro-
tational relaxation time cannot be explained by mode-
coupling theory, but rather by the collective dynamics of
the fluctuating hydrogen-bond network, i.e., thermally in-
duced changes in the tetrahedral hydrogen-bond network,
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such as the concentration of over-coordinated (and under-
coordinated) “defects”. This looks quite consistent with
our two-state model scenario.

3.9.3 Effects of glass transition

Finally we mention possible effects of a hidden glass tran-
sition point in the slowing down of dynamics. In the analy-
sis of the T -P dependence of the viscosity [26], we noticed
that the low temperature increase of the viscosity cannot
be fully explained by eq. (28) and we need another source
of slow dynamics, which may be linked to glass transition.
In our study of monodisperse hard spheres [36], we see
the growth of the correlation length of bond orientational
order upon densification, which is a manifestation of glass
transition. However, this glass transition is inaccessible as
in monodisperse hard spheres, because crystallization al-
ways takes place before reaching it. Such a hidden glass
transition, if it exists, should lead to the dynamics char-
acteristic of fragile liquids since there is little frustration
in this case. This example suggests that even a very poor
glass former shows behaviour characteristic of fragile glass
formers, where the tensorial nature of the order parame-
ter plays an important role (see sects. 5 and 6). Thus, we
expect similar behaviour also for water. In other words,
at lower temperatures bond orientational order starts to
extend and may lead to glassy slow dynamics. However,
we know that hard-sphere liquids suffer from competition
between crystal-like bond orientational ordering and icosa-
hedral ordering. Thus, hard-sphere liquids may suffer from
stronger frustration effects than water does.

In contrast to the above expectation, however, the real
glass transition of water at 136K exhibits a character of
strong liquid. This strong nature of the glass transition
may be a consequence of strong frustration effects of water
locally favoured structures on crystallization into a crys-
tal different from the hexagonal ice: This crystal which
tends to be formed at such a very low temperature may
have a symmetry inconsistent with the tetrahedral locally
favoured structure of water. However, this argument may
be too speculative and thus further studies are highly de-
sirable.

3.10 Anomalies of water-type atomic liquids

For water-type liquids (water, Si, Ge, Ga, . . . ), the exis-
tence of short-range bond order with tetrahedral symme-
try is evidenced by the shoulder in the high wave number
(k) side of the first peak of the structure factor F (k),
or the second peak of the radial distribution function
g(r). For Si, for example, the first peak of g(r) is lo-
cated around r1 = 2.4 Å, whereas the second one is around
r2 = 3.5 Å [122]. The ratio of 3.5/2.4 = 1.46 is compat-
ible with that of the two characteristic interatomic dis-
tances of the tetrahedral structures, 2

√
6/3 = 1.63. For

liquid Si, the temperature dependence of the ratio of the
height of the second peak to that of the first one of g(r),
g(r2)/g(r1), which may be a direct measure of the popu-
lation of tetrahedral units, is found to be well described
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Fig. 15. Temperature dependence of g(r2)/g(r1) of Si calcu-
lated from the experimentally measured g(r) [122]. The solid
curve is our prediction: g(r2)/g(r1) = a + bS̄, where a and b
are positive constants [22]. Its anomalous increase upon cooling
is very well described by the Boltzmann factor, exp(8107/T )
(solid line). This figure is reproduced from fig. 2 of [22].

by S̄ with ΔE = 8107K (see fig. 15). We also found that
the anomalies of ρ and CP of liquid Si can also be well
explained by our predictions (eqs. (17) and (21)) with the
same ΔE [22]. Thus, the anomalous thermodynamic be-
haviour can be well explained by our simple scenario. Fur-
thermore, the persistence of covalent bonding in metallic
liquid silicon above Tm was recently confirmed experimen-
tally by X-ray Compton scattering [123]. We argue that
critical phenomena associated with a critical point of LLT
may not play a primary role in the anomaly [25,26,22,27],
as in the case of water, even if it exists.

3.11 On the influence of critical anomaly associated
with the second critical point

One popular scenario of water-type anomalies is based
on critical phenomena associated with the second critical
point. Here we mention some difficulties in this scenario.
i) Obviously, the anomaly of density cannot be explained
by the effects of critical fluctuations. It is well-known that
even at a gas-liquid critical point, where the fluctuations
of density order parameter diverge, the average density
itself has no critical anomaly. In principle, critical fluctu-
ations of bond order parameter S may cause the anomaly
of the compressibility and the heat capacity, since these
quantities can be expressed by the correlation function of
the order-parameter fluctuations. For example, the excess
anomaly of CP , ΔCP , should be expressed in terms of
critical fluctuations of entropy δσ as [124]

ΔCP = kBρ̄

∫
dr〈δσ(r)δσ(0)〉. (29)

On the other hand, the density anomaly must stem solely
from the linear coupling of density order parameter to
the average value of bond order parameter, namely, the
increase of the average value of bond order parame-
ter itself S̄ upon cooling, as described above. Accord-
ing to our scenario, the density anomaly is expressed by
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the same Boltzmann factor as the anomaly of KT and
CP . This strong correlation of the anomaly between the
critical-anomaly-free quantity (density) and the critical-
fluctuation-sensitive quantities (KT and CP ) indicates the
relevance of our scenario. ii) The X-ray scattering mea-
surements of the correlation length ξ of fluctuations in
supercooled water at ambient pressure shows a slight in-
crease [125,126] in ξ or almost no indication of critical-
ity [127,128]. This indicates that the water’s anomaly is
“at least primarily” not due to critical phenomena. Note
that ξ is the most fundamental quantity characterizing
the spatial scale of critical fluctuations. Without a signif-
icant critical enhancement of ξ, it is difficult to expect
strong critical divergence of the physical quantities. iii) It
is known that shear viscosity does not show a strong criti-
cal anomaly even near a critical point. The shear viscosity
is given by [124]

η = ηb +
1

kBT

∫ ∞

0

dt

∫
dr〈Πxy(r, t)Πxy(0, 0)〉, (30)

where ηb is the non-critical background. Here Πxy is the
xy component of stress tensor and may be expressed by
Πxy = C(∂φ/∂x)(∂φ/∂y), where φ is the order parameter.
In this case, φ may be S. Then the viscosity anomaly is
calculated by using the decoupling approximation for the
four body correlation function of the order parameter and
expressed by the weak logarithmic divergence even near
the critical point [124]. It means that the critical expo-
nent is effectively zero (more exactly, ∼ 0.04). Thus, we
cannot expect any strong critical anomaly for the viscos-
ity associated with a second critical point, even if it exists.
Thus, we believe that the viscosity anomaly is not primar-
ily caused by critical fluctuations. We note that frustration
effects may alter this conclusion (see sect. 5.3.9).

3.12 Structural characteristics of liquid water

Here we mention a recent work by Perera [129] on the
structure of liquid water on the basis of radial distribu-
tion functions obtained by simulations. He found that the
radial distribution function of water is characterized by a
compact three-peaks structure over three molecular diam-
eters, which is followed by an apparent loss of the packing
correlations beyond Rc ∼ 9 Å. This is in contrast to simple
liquids for which the correlations decay continuously with
distance. This indicates the importance of competition be-
tween the packing effect and the hydrogen bonding inter-
actions, which is consistent with our two-order-parameter
scenario. It was also suggested that the spatial correla-
tions appear as a part of a special local structure and not
by density fluctuations. This indicates that weak enhance-
ment of the structure factor in small angle X-ray scatter-
ing even at room temperature quite far from any critical
phase transition may be a consequence of special types of
short-range correlations that are not critical fluctuations.
This is again consistent with the above explanation.

Because of the phenomenological nature of our model,
we cannot specify what is a locally favoured structure for

water, besides its link to tetrahedral structural order. It is
highly desirable to reveal its very structure, which satisfies
to be regarded as a symmetry element with a large specific
volume.

3.13 Liquid-liquid transition in water-type liquids

To explain the water-type anomalies, we do not use the
cooperativity of short-range bond ordering. That is, we
assume S 	 1 (not necessarily J = 0) for simplicity.
However, it is natural to expect that there is some co-
operativity in S ordering (i.e., J �= 0). Then there can be
a second critical point associated with cooperative S or-
dering. Thus, our model does not preclude the existence of
LLT, but rather predicts its existence [9]. Once we include
the cooperativity, it should also influence the thermody-
namic and kinetic behaviour near the critical point [25,
26]. However, we believe that the water anomalies may be
explained without invoking such cooperativity because of
a long distance from the critical point, even if it exists. In
our view, the maximum of the isothermal compressibility
primarily comes from the “non-cooperative” part of the
free energy f(S) (see eq. (5)), which is sometimes called
“Widom line” [130]. It is worth mentioning that recently
the relationship between various scenarios was studied in
a general framework [131]. We also note that Procaccia
and Regev [132] recently constructed a simple statistical
mechanics theory which describes the local structure of a
generic model of tetrahedral liquids, the Stillinger-Weber
model. They showed that a finite tendency of a liquid
towards tetrahedral symmetry can cause anomalous be-
haviour with or without an underlying phase transition,
consistent with our scenario, and the presence of three-
body interactions is not equivalent to the presence of co-
operativity leading to LLT.

Since our model is phenomenological in nature, we can-
not predict the location of the second critical point of
water even if it exists. The location of the second critical
point was predicted from experimental results of the amor-
phous (HDA)-amorphous (LDA) transition as well as nu-
merical simulation results. The former suffers from elastic
effects associated with the solid-state volume change ac-
companied by the transition [25] (see below), whereas the
latter suffers from the fact that the location of LLT is cru-
cially dependent upon the potentials used [42,133–135].
Numerical simulations focusing on both glass transition
and LLT may shed light in this problem [136]. Recently it
was suggested by Limmer and Chandler that there is no
LLT for water on the basis of numerical simulations using
the so-called mW and modified ST2 models [137], contrary
to previous reports. This problem is associated with the
fundamental question of whether tetrahedral bond orien-
tational order in the supercooled water is associated with
locally favoured structures characteristic of the second liq-
uid or crystal ice order. This is now a matter of active
debate (see, e.g., [138]). So further careful studies are nec-
essary to settle a) whether LLT really exists in water or
not, b) what is the relation between LLT and crystalliza-
tion, and c) where the second critical point is located if it
exists. See also the next section on this problem.
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The situation is similar in water-type atomic liquids.
There are many indications of the existence of LLT from
numerical simulations, for example, in Si [139–143]. The
LLT of Si is also expected to be located below the melting
point, which is not easy to access experimentally as in the
case of water, due to the interference by crystallization.
Nevertheless, the polyamorphic transition was reported
experimentally [144,145]. LLT in water-type liquids thus
continues to be an interesting topic for future research (see
below).

4 Liquid-liquid transition

Here we consider the phenomena of liquid-liquid transition
in a single-component liquid in the framework of our two
order parameter model.

4.1 Current situations

Usually it is considered that atoms or molecules have ran-
dom disordered structures in gas and liquid states. This
leads to a common sense view that any single-component
substance has only one gas and one liquid state. On
the other hand, it is widely known that even a single-
component liquid can have more than two crystal forms,
which is known as “polymorphism”. The uniqueness of the
state is very natural and correct for gas, where the kinetic
energy dominates. However, it is not so obvious for liquid
since many body interactions come into play, reflecting its
high density, as we saw above.

Recently there has been growing experimental evi-
dence that even a single-component liquid can have more
than two liquid states [1,146,147,46,148–153,45,40,42].
The transition between these liquid states is called “liquid-
liquid transition (LLT)”. There are also experimental in-
dications for the presence of LLT in binary-component liq-
uids such as AsS [154,155]. The existence of liquid-liquid
transition has also been supported by a number of numeri-
cal simulations for atomic liquids such as Si [139,141–143]
and molecular liquids such as water [42,133–135]. This
phenomenon has attracted considerable attention not only
because of its counter-intuitive nature but also from the
fundamental importance for our understanding of the liq-
uid state of matter. The connection between liquid-liquid
transition and polyamorphism is also an interesting issue.

In many cases, however, liquid-liquid transitions exist
in a region which is difficult to access experimentally, and
accordingly its very existence itself is a matter of debate
and the physical nature and kinetics of the transition re-
mains elusive.

For example, Katayama et al. discovered the first-order
LLT in phosphorus at high pressure and high tempera-
ture with synchrotron X-ray scattering [150,151]. They
revealed the structure factors for both liquid I and II
and confirmed the coexistence of liquid I and II during
the transition, which suggests the first-order nature of
the transition. The change in the structure factor sug-
gests that LLT in phosphorus is the transformation from

tetrahedral to polymeric liquid. Such a structural transi-
tion was supported by the first principle simulation per-
formed by Morishita [140]. However, Monaco et al. [152]
confirmed that the first-order transition in P is between
a high-density molecular fluid (not a liquid in the ex-
act sense) and a low-density polymeric liquid. Thus, the
transition is now regarded as a “supercritical fluid”-liquid
transition rather than a liquid-liquid transition. This ex-
plains an unusually large difference in the density between
the two states. The existence of LLT in liquid Si was also
suggested by high-pressure experiments [144,145,147] and
numerical simulations [139,141,142], but the presence of
LLT still needs to be checked carefully. LLT was also re-
ported in yttria-alumina [146,156,147,157,158]. However,
there are also still on-going debates on the composition
range over which this phenomenon occurs and the experi-
mental conditions required to produce the effect [159] and
even on its existence itself [160].

For molecular liquids, Mishima et al. found an amor-
phous-amorphous transition in water [161]. The transition
has recently been studied in details [42]. Computer simu-
lations also suggest the existence of LLT(s) in water [42,
40,148,135,134,162]. On the basis of these findings, the
connection of amorphous-amorphous transition and LLT
in water was suggested and actively studied [40,42]. How-
ever, the LLT is hidden by crystallization in water, even
if it exists. This makes an experimental study on the LLT
extremely difficult especially for bulk water. Even for nu-
merical simulations, difficulties associated with the dis-
tinction between LLT and crystallization in a deeply su-
percooled liquid was recently pointed out [137]. It was also
pointed out that the role of mechanical stress involved in
amorphous-amorphous transition may make the connec-
tion a bit obscure [25].

As briefly reviewed above, LLT is located at high pres-
sure and high temperature (e.g., for atomic liquids) or
hidden by crystallization (e.g., for water) in the above
examples. This makes detailed experimental studies very
difficult. This situation has been much improved by re-
cent confirmation of LLT at ambient pressure in molec-
ular liquids, triphenyl phosphite (TPP) [28,29] and n-
butanol [30]. However, this phenomenon was also claimed
by Hedoux et al. [163–169] to be induced by the formation
of micro-crystallites rather than LLT. Recently, a similar
claim was also made for n-butanol [170–172].

So strictly speaking, there has been no firm consensus
on the existence of LLT for any substance from the exper-
imental side, and it remains a matter of debate whether
the above-mentioned phenomena are the true evidence of
LLT or not. Theoretically, on the other hand, the general-
ity of LLT, or possible existence of LLT in various types of
liquids, was recently discussed on the basis of phenomeno-
logical [16,9] and analytical models [173–175,131].

It is known that LLT usually accompanies a large
change in the physical properties of liquid even though
the component is exactly the same. This means that the
problem of LLT is linked to the fundamental question of
what physical factors control the properties of a liquid.
Here we discuss the physical origin of liquid-liquid transi-
tion on the basis of a simple physical picture of local struc-
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Fig. 16. (Colour on-line) Schematic phase diagram of liquid-
liquid transition in T -S plane [9]. Liquid-liquid transition can
be understood as a transition between a S-gas state and S-
liquid state.

turing of a liquid and its cooperativity. We also consider
the kinetics of the transition, which was recently observed
in molecular liquids, triphenyl phosphite and n-butanol.
The liquid-liquid transformation kinetics was classified
into nucleation-growth-type and spinodal-decomposition-
type. The behaviour is well explained by a scenario that
liquid-liquid transition is a consequence of the coopera-
tive ordering of a non-conserved scalar order parameter,
which is the number density of locally favoured structures,
S(r). We also discuss some unsolved problems, which may
be at the heart of liquid-liquid transition, and alternative
scenarios proposed on the same phenomena.

4.2 Thermodynamics

We now consider a liquid-liquid phase transition, or coop-
erative short-range bond ordering (see fig. 16), on the basis
of the free energy f(S) given by eq. (5) [9]. The equilibrium
value of S is determined by the condition ∂f(S)/∂S = 0,
or

β[−ΔE + ΔvP + J(1 − 2S)] + ln
gρS

gS(1 − S)
= 0, (31)

where ΔE = Eρ−ES > 0, Δv = vS −vρ, and β = 1/kBT .
It is worth noting that the degeneracy of each state, or the
entropy difference between the two states, strongly affects
the phase behaviour. A critical point is determined by the
conditions, f ′

S(Sc) = 0, f ′′
S (Sc) = 0, f

(3)
S (Sc) = 0, and

f
(4)
S (Sc) > 0, as

Sc = 1/2, (32)

Tc = J/(2kB), (33)

Pc = [ΔE − TcΔσ]/Δv. (34)

A first-order phase-transition temperature Tt is obtained
as

Tt = (ΔE − PΔv)/Δσ. (35)

Fig. 17. (Colour on-line) Schematic representation of the free-
energy surface of a system having liquid-liquid transition on
the ρ-S plane [16]. This is a case for Δv > 0. The situation
corresponds to the free-energy surface at a certain temperature
and volume (not pressure), where the two liquid states have the
same free energy. This is reproduced from fig. 4 of ref. [16].

Note that a first-order transition occurs only if Tt < Tc.
For Tt > Tc, this Tt is a temperature where ΔG = 0
and thus S̄ = 1/2. The maximum of KT is also located
near Tt. Δv may be positive for liquids such as water and
Si, but it can also be negative for liquids such as triphenyl
phosphite (see below). The sign of Δv determines the slope
of Tt(P ). Liquid I and liquid II are defined as the two
possible minima of the liquid-state free energy on the ρ-S
plane (see fig. 17).

4.3 Origin of cooperativity

The origin of cooperativity in the formation of locally
favoured structures is a very fundamental and important
issue for our understanding of liquid-liquid transition. One
is the microscopic cooperativity of directional bonding,
which is related to the change in the electronic state by
the formation of locally favoured structures. The second is
the modification of the degree of freedoms around locally
favoured structures due to the local reduction of configura-
tional and vibrational entropy. The third is a possible role
of long-range van der Waals forces, which is due to the dif-
ference in density between locally favoured structures and
normal-liquid structures, δρ. The interaction strength may
be estimated as

U ∼ U11(δρ/ρ)2(b/a), (36)

where U11 is the interaction between basic units (atoms or
molecules) of size a, and ρ is the density, and b is the size
of locally favoured structures. This interaction might be
too weak to cause LLT in the usual situation. Since this
problem lies at the heart of our understanding of LLT,
further careful studies are highly desirable. First princi-
ple calculations may be a promising way to attack this
problem.
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4.4 Nature of the order parameter governing
liquid-liquid transition

In relation to the above, we briefly discuss the nature
of the order parameter governing LLT. So far we put a
special focus on the local symmetry of locally favoured
structures and argue that the order parameter controlling
LLT should be described by a bond orientational order
parameter. However, a liquid-liquid transition is also seen
in particles interacting with spherically symmetric poten-
tials such as the Jagla model [176,177]. This indicates that
directional interactions are not necessary to have LLT and
the presence of the two lengthscales in the interaction po-
tential is a key to LLT [177]. Nevertheless, we argue that
the bond orientational order parameter is still a relevant
order parameter for this case since it is natural to expect
that the presence of the two lengthscales in the poten-
tial leads to the selection of a specific local symmetry.
The situation is similar to bond orientational ordering in
hard spheres. Theoretically, there is a merit to have the
two order parameters with different characters, density
and bond order parameters, rather than to have only the
density as an order parameter: The presence of the two
scalar order parameters allow us to have a gas-liquid-type
transition for each order parameter. Since this problem
is also of fundamental importance, further careful studies
are highly desirable.

4.5 Possible types of liquid-liquid phase transition

The examples of possible phase diagrams are shown in
figs. 18(a)-(d). The type of a phase diagram is classified
by the values of J and ΔE. The phase diagrams include
both liquid-solid and liquid-liquid transitions. As shown
in these figures, we propose that liquid-liquid phase tran-
sition can, in principle, exist in any liquids including even
ordinary molecular liquids. The necessary conditions are
i) the existence of locally favoured structures and ii) their
cooperative excitation (J > 0): many body interactions
and their cooperativity. For materials of large J and ΔE,
a liquid-liquid transition exists in a stable liquid state (see
fig. 18(a)), whereas it is hidden by crystallization for ma-
terials of intermediate J and ΔE (see fig. 18(b)) or it is
located in a glassy state for materials of small J and ΔE
(see figs. 18(c) and (d)). In the last case, there may practi-
cally be no direct access to LLT because of the interference
due to crystallization, as in the case of water.

4.5.1 Liquid with large J and ΔE

First we consider the case of large J and ΔE. Carbon and
phosphorus may be examples of materials having large J
and ΔE (see fig. 18(a)). Carbon is, for example, known
to have a few candidates of locally favoured structures,
reflecting sp (S1), sp2 (S2), and sp3 (S3) bonding. Fig-
ure 18(a) demonstrates a possible phase diagram of such
a liquid, which starts from a situation that sp2-type bond-
ing is dominant at ambient pressure. There should exist

S2

S3

a b

c d

Fig. 18. (Colour on-line) (a) Schematic P -T phase diagram
of a liquid with large ΔE and J such as liquid carbon. In
this case, we assume more than two types of locally favoured
structures in the liquid. The gas-liquid critical point (CPρ) is
not shown in this figure. (b) Schematic P -T phase diagram of a
liquid with intermediate ΔE and J such as liquid water. CPS

is a critical point of S ordering. The gas-liquid critical point
(CPρ) is not shown in this figure. ms stands for “metastable”.
The dashed and dot-dashed lines are spinodal and first-order
transition lines, respectively. (c) Schematic P -T phase diagram
of a liquid with small ΔE and J for Δv > 0. (d) The same for
Δv < 0. CPS is a critical point of S ordering and located at
negative pressure. The gas-liquid critical point (CPρ) is not
shown in this figure. ms stands for “metastable”.

S1 liquid in a negative pressure region. CPS2 and CPS3

are critical points associated with S2 and S3 ordering,
respectively. Above the critical points, the type of liquid
changes in a continuous manner. In this case, the liquid-
liquid transition lines and the associated critical points
exist in an equilibrium liquid state. Note that the rela-
tion among the density of each phase is as follows: S2
liquid < S2 crystal < S3 liquid < S3 crystal < ρ liq-
uid < ρ crystal. For carbon, S2 crystal is graphite and
S3 crystal is diamond. The sign of the slope of a melt-
ing line is determined by the Clausius-Clapeyron relation,
dTm/dP = Δvm/Δσm, where Tm is the melting point,
and Δσm and Δvm are the changes in entropy and vol-
ume upon melting, respectively. Since Δσm > 0, the sign
of dTm/dP is determined solely by Δvm. The melting lines
in fig. 18(a) are drawn by using this fact together with the
above relation among the density of each phase. The phase
diagram shown in fig. 18(a) is basically consistent with
that of liquid carbon obtained by experiments [178] and
simulations (see, e.g., fig. 2 of ref. [179]) in a low pressure
region. More quantitative comparisons require the infor-
mation on physical quantities such as ΔE, Δv, Δσ, and J .
Our model predicts the existence of an additional critical
point (CPS3) at a high pressure region of the phase di-
agram. Experimental studies in this high pressure region
are highly desirable.
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4.5.2 Liquid with intermediate J and ΔE

Water-type liquids may be examples of materials hav-
ing intermediate J and ΔE (see fig. 18(b)). In this case,
the liquid-liquid transition line and the associated criti-
cal point exist in a metastable state below the melting
line [148]. Actually, recent experimental [180] and molec-
ular dynamics simulations [133,181] studies have indi-
cated evidence of a first-order liquid-liquid transition in a
metastable state of water. The presence of multiple LLTs
was also suggested for water [134]. For water, for example,
ice Ih is identified as S crystal, whereas ices III, V, . . . ,
are identified as ρ crystal. The liquid density should be
higher than S crystal, but lower than ρ crystal, which is
consistent with what is known for the real water.

The situation of liquid Si is quite similar to that of
water. Recent simulations indicate the existence of LLT
in liquid Si [139,182–186,143]. There is also experimental
evidence for it [144]. On the prediction of LLT of Si on the
basis of numerical simulations, it was also pointed out that
the details of the potential could affect strongly the na-
ture and even the existence of the liquid-liquid phase tran-
sition [187]: the liquid-liquid transition disappears when
the three-body term of the potential is strengthened by as
little as 5%.

4.5.3 Liquid with small J and ΔE

Finally, we argue that even an ordinary liquid, which has
small J and ΔE, may have a liquid-liquid transition (see
figs. 18(c) and (d)). For this case, Pc may also be ei-
ther negative or positive. As mentioned above, we recently
found LLT in molecular liquids, TPP and n-butanol [28–
30]. The state diagrams of these molecular liquids corre-
spond to the case of fig. 18(d), namely, the locally favoured
structures are denser than the normal liquid structures
(Δv < 0). This was supported by high-pressure measure-
ments [188,189]. These systems may be ideal for the study
of LLT in the sense that it is very easy to access LLT ex-
perimentally. We will discuss LLT in these liquids in detail
later.

4.5.4 Fischer clusters

The above picture for liquid with small J and ΔE might
provide us with a possible scenario of “Fischer clus-
ters” [190]. Fischer and his coworkers found that some su-
percooled molecular and polymeric liquids exhibit strong
excess scattering, which indicates mesoscopic-lengthscale
fluctuations of the refractive index. While approaching
the mean-field spinodal line, there may be the critical en-
hancement of S fluctuations, which causes the excess scat-
tering. This can happen at ambient pressure if a critical
point of S ordering is located at a negative pressure and
Δv > 0 (see fig. 18(c)) or if it is located at a positive pres-
sure and Δv < 0 (see fig. 18(d)). Thus, “Fischer clusters”
might be viewed as critical-like fluctuations of S near a

hidden mean-field spinodal of a gas-liquid-like phase tran-
sition of locally favoured structures (S ordering). The pos-
sible existence of LLT in any liquid is a natural conse-
quence of our picture that cooperative short-range order-
ing exists in any liquid. Dynamic anomaly associated with
Fischer clusters can also be reasonably explained by our
model [16,9], although this should be checked carefully. If
this scenario is correct, these phenomena can be used to
probe LLT.

The following predictions can be made on the basis of
our model: i) Liquids exhibiting “Fischer clusters” may
have a liquid-liquid phase transition at a lower tempera-
ture. This transition may be hidden by a liquid-glass tran-
sition. ii) Applying a higher pressure at the same temper-
ature should weaken the critical-like anomaly for Δv > 0,
while strengthen it for Δv < 0. Here it is worth noting
that our discussion is based on the mean-field approxi-
mation. The critical-like anomaly near a spinodal line ex-
ists only in the mean-field limit. This may be consistent
with the fact that “Fischer clusters” are characterized by
a long bare correlation length and are commonly observed
in many polymeric glass formers [190,191], on noting that
the Ginzburg criterion is safely satisfied in a system with
a long-range interaction as in polymer systems.

However, we should note that there is no consensus on
the presence of Fischer clusters itself and the situation is
very controversial. Some people think that Fischer clus-
ters are associated with impurities in a sample, since any
organic liquid inevitably contains some impurities. This
is a possible scenario, however, it is unclear how impuri-
ties can induce “critical-like” excess scattering. There is
also a possibility that the phenomena are caused by an
unknown mechanism. Thus, we need further experimental
studies on this problem.

4.6 Remark on the relationship between melting-point
maximum and LLT

The melting-point maximum is often regarded as a signa-
ture of liquid-liquid transition and it was a motivation of
the mixture model developed by Rapoport [59]. However,
the presence of the melting point maximum does not nec-
essarily means the presence of LLT. Recently this problem
was discussed by Imre and Rzoska [192] and by Makov and
Yahel [193].

In relation to this, it may be worth mentioning that
particles interacting with soft potentials such as the Gaus-
sian Core model (GCM) show the maximum melting point
in the T -P phase diagram. Because the pair potential be-
tween GCM particles is bounded, it cannot maintain a
crystalline order at high enough pressures, causing a re-
entrant melting of the solid phase at high densities [194].
This leads to a maximum melting temperature for the
GCM, but without LLT. The presence of a maximum
melting temperature is one of the striking features of sys-
tems of particles with a bounded repulsive interaction [87,
86,195]. At high temperature and/or pressure the core is
unable to give rise to the excluded-volume effects respon-
sible for crystallization, and thus the stable phase is the
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Fig. 19. (Colour on-line) (a) Schematic P -T phase diagram
of a liquid. (a) A system without a kink in the melting curve.
dTm/dP is also schematically shown. Our two-order-parameter
model predicts the exponential-like functional shape, reflect-
ing the pressure dependence of S̄. (b) A system with a kink
in the melting curve, reflecting the presence of LLT. In this
case, dTm/dP has a jump, reflecting the kink in the pressure
dependence of the melting point T .

liquid. Furthermore, the GCM shows a solid-solid phase
transition from the fcc to the bcc structure, where the fcc
phase is stable at low temperature and pressure. In fact,
at such conditions the repulsion is strong enough to avoid
penetration and the fcc structure is favoured, whereas at
high pressure the core is more easily penetrable and the
bcc phase becomes the stable one. In relation to this, it
was recently reported [196] that the re-entrant behaviour
in Na results from the screening of interionic interactions
by conduction electrons, which at high pressure induces a
softening in the short-range repulsion, and such an effect
plays an important role in governing the behaviour of a
wide range of metals and alloys. These examples also sug-
gest that the presence of a melting point maximum is not
necessarily linked to the presence of LLT.

Here we point out on the basis of our two-order-
parameter model that a melting point maximum can also
be induced by the change in the liquid side: The pressure
dependence of the melting point Tm may exhibit a non-
monotonic P -dependence, reflecting the P -dependence of
S̄. Our model predicts that the shape of the melting point
curve is approximated by the straight line minus the term
proportional to the Boltzmann factor, as shown below (see
also fig. 19(a)):

Tm(P ) ∼ T b
m(P ) − ΔTS̄(P ), (37)

where T b
m(P ) is the background part of the pressure de-

pendence of Tm and ΔT is the amplitude of the effect
of local bond orientational (S) ordering on the melt-
ing point. The Clausius-Clapeyron relation tells us that
dTm/dP = Δvm/Δσm, where Δvm and Δσm are respec-
tively the change in the specific volume and entropy upon
a liquid-solid transition. We note that the volume and en-
tropy of a crystal have monotonic pressure dependences
besides the above-mentioned systems interacting soft po-
tentials. On the other hand, the volume and entropy of a

liquid depends on P as expected from eqs. (16) and (20),
respectively. Depending upon the balance of these two ef-
fects, thus, the melting point can have a broad maximum
as a function of P even without liquid-liquid transition.
LLT should be associated with a discontinuity of dTm/dP ,
or a sharp kink in the melting curve (see fig. 19(b)). So a
special care is necessary to seek LLT by using the shape
of the melting curve.

4.7 Kinetics of LLT

In LLT, we argue that the bond order parameter S plays
essential roles, as explained above, and the density order
parameter ρ is slaved by S. Using δS = S−S̄, we introduce
the following minimal Landau-type free-energy density by
expanding f(S) in terms of δS, which governs S fluctu-
ations near a gas-liquid-like critical point or mean-field
spinodal lines of bond ordering, where S = SSD

f(δS)
kBT

=
κ

2
δS2 +

b3

3
δS3 +

b4

4
δS4 + hδS, (38)

where κ= 1
SSD(1−SSD)Θ, b3 =− 1

2

[
1

S2
SD

− 1
(1−SSD)2

]
, b4 =

1
3

[
1

S3
SD

+ 1
(1−SSD)3

]
, and h =

[
ln gρ

gS
+ ln SSD

1−SSD

]
Θ. In the

last relation, we use ∂f/∂S = ∂2f/∂S2 = 0 at T = T ∗
SD. In

the above, Θ is the scaled temperature: Θ = (T −T ∗
SD)/T ,

where T ∗
SD is a critical or spinodal temperature of bond

ordering without the coupling to ρ, and b2 and b4 are
positive constants. By further including the gradient term,
we obtain the following Hamiltonian that we believe is
relevant to the physical description of liquid near a gas-
liquid-like transition of locally favoured structures [9]:

βHS =
∫

dr

[
f(δS) +

KS

2
|∇δS|2

]
. (39)

For simplicity, we assume the density ρ is given as a func-
tion of S as follows: ρ(r) = ρN (1−S(r))+ ρSS(r), where
ρN is the density of the normal-liquid structure and ρS is
the density of the locally favoured structure. For Δv < 0,
which is a case of TPP, an increase in S leads to an in-
crease in ρ.

In our previous papers [16,9], we employed a more
complex coupling between ρ and S, which leads to the
constraint for the global density. However, real experi-
ments are performed at constant pressure and there is no
constraint for the total density. Indeed, our preliminary
light scattering experiments show that the scattering in-
tensity at k → 0 grows upon LLT, which is indicative of
the evolution of the structure factor of a non-conserved
order parameter. Although we need a more complete de-
scription, which takes into account the couplings to the
density (mass conservation), velocity fields (momentum
conservation), and temperature fields (energy conserva-
tion), we here stick to the simplest version of the kinetic
theory. Here we note that Takae and Onuki recently inves-
tigated the roles of latent heat on LLT. This might also
play an important role [197] if local heating is allowed due
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to a weak thermal contact between the sample and the
temperature bath.

The kinetic equation describing the time evolution of
the non-conserved scalar order parameter S is then given
by [9]

∂δS

∂t
= −LS

[
−KS∇2δS +

∂f(δS)
∂δS

]

= −LS

[
− KS∇2δS + h + κδS + b3δS

2

+b4δS
3 + Cδρ

]
+ ζ ′S , (40)

where LS is a kinetic coefficient and ζ ′S is normalized
thermal noise, which satisfies the following fluctuation-
dissipation relation:

〈ζ ′S(r1, t1)ζ ′S(r2, t2)〉 = 2(LSξ2
ρ/Lρ)δ(r1 − r2)δ(t1 − t2).

We stress that the non-conserved nature of the order pa-
rameter S originates from the fact that locally favoured
structures can be created and annihilated without the con-
straint of its conservation.

4.7.1 Nucleation-growth(NG)-type LLT

When we quench and anneal TPP or n-butanol in the
metastable region with respect to LLT, droplets of liquid
II are randomly nucleated in both space and time in liquid
I and the domain size R grows with a constant interface
velocity as R ∝ t [28–30]. In the late stage, droplets of liq-
uid II collide, coalesce, and further grow. This behaviour is
characteristic of the NG behaviour. Then, the new phase
covers the entire region and eventually the boundary be-
tween droplets tends to disappear; and, thus, liquid I al-
most transforms to homogeneous liquid II (see fig. 20(a)).
This is a consequence of the non-conserved nature of S
and the off-symmetric quench. If the LLT were governed
by a conserved order parameter, the diameter would grow
in proportion to t1/3 and the system would never become
homogeneous again [124].

The temporal evolution of the average order param-
eter S during the transformation, which is directly re-
lated to the temporal evolution of the enthalpy H(t) mea-
sured in experiments. H(t) can be estimated from the
latent heat flux dH/dt released during the transforma-
tion from liquid I to liquid II [198], which was measured
by differential scanning calorimetry (DSC). Microscopi-
cally, the latent heat is a consequence of the formation
of locally favoured structures. We found that the time
evolution of H(t) obeys the Avrami-Kolmogorov equa-
tion [124], H(t)/Hm = 1 − exp(−Ktn), where Hm is the
final value of H(t). We obtained n = 4 from the fitting,
which means that liquid II is nucleated homogeneously
and grows isotropically with a constant rate in 3D. This
is consistent with the above result of microscopy observa-
tion. Note that n = d + 1 (d: the spatial dimensionality)
for the case of homogeneous nucleation and isotropic lin-
ear growth [124].

Fig. 20. (Colour on-line) Pattern evolution observed during
the annealing of a supercooled liquid at Ta. (a1)-(a3) are ob-
served with normal microscopy at Ta = 220 K at the annealing
time ta = 60 min, 120min, and 240 min, respectively. (b1)-(b3)
are observed with phase-contrast microscopy at Ta = 213 K at
ta = 120min, 240 min, and 360min, respectively. The length of
the white bar in (a1) corresponds to 100 μm for (a1)-(a3), while
to 20 μm for (b1)-(b3). The sample thickness was 100 μm for
(a), while 20 μm for (b). This figure is reproduced from fig. 1
of [28].

The NG-type transformation is characterized by the
temporal change of the probability distribution function
of the bond order parameter S, P (δS): P (δS) changes
from a single Gaussian shape at t = 0 to another Gaussian
(t → ∞) through a double-peaked shape for NG [199,200].
This reflects the fact that the nuclei have already the final
value of the order parameter when they appear.

4.7.2 Spinodal-decomposition(SD)-type LLT

Next we consider SD-type LLT, which occurs when a liq-
uid is quenched into an unstable region below TSD [28–
30]. First we summarize our experimental findings. We
studied pattern evolution during LLT. The initial stage is
reminiscent of the Cahn’s linear regime [124]. In the be-
ginning, the amplitude of fluctuations exponentially grows
with time and thus the contrast increases. Then, the do-
main size and the contrast both increase. Later the liquid
becomes more homogeneous, which leads to the decrease
in the contrast. Finally, the liquid becomes homogeneous
liquid II.

We also followed the temporal evolution of the heat re-
leased upon the transformation, H(t) (see fig. 21), which is
expected to be proportional to the bond order parameter
S(t), provided that the heat is released upon the forma-
tion of locally favoured structures. It is well described by
the SD-type evolution of a non-conserved order parame-
ter. For the ordering of a non-conserved order parameter,
the interface motion is described by the Allen-Cahn equa-
tion: v = dR/dt = −LΥ , where v is the interface velocity,
L is the kinetic coefficient, and Υ is the mean curvature
of the interface (∼ 1/R). This relation yields the domain
coarsening law of R ∼

√
Lt. However, this is a case for
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Fig. 21. The annealing time dependence of the heat released
during LLT, H(t), at Ta = 213 K, 214 K, 215K, 219K, 221 K,
and 223K. NG-type transformation occurs at Ta = 219 K,
221 K, and 223K, while SD-type one occurs at Ta = 213 K,
214 K, and 215 K. This figure is reproduced from fig. 2 of
ref. [198].

a symmetric quench where there is a symmetry against the
fluctuations of the order parameter and a sharp interface
between the two phases is formed. For an off-symmetric
case, a sharp interface is never formed and the scaling ar-
gument is not firmly justified, which makes the coarsening
law less obvious.

The evolution of the average value of S for a critical
quench can be described by the theoretical prediction for
the SD-type evolution of a non-conserved order parameter:

S(t)
Sm

=
Sm[1 + (( Sm

S(0) )
2 − 1)e−2γt]−0.5 − S(0)

Sm − S(0)
,

where γ is the growth rate of the order parameter [124].
This relation is obtained from the kinetic equation by ig-
noring the gradient term, the thermal noise, and the cou-
plings of the two order parameters there. In the above, the
linear and cubic terms in the free-energy eq. (38) are also
neglected, which may yet play an important role in many
cases.

Finally we mention the temporal change of the prob-
ability distribution function of the bond order parameter
S, P (δS). For SD-type LLT, the distribution transiently
becomes broader. Reflecting the non-conserved nature of
S, the mean value of S, S̄, increases with time in a discon-
tinuous manner for NG, whereas in a continuous manner
for SD [29,200].

4.7.3 Behaviour of the isothermal compressibility

Next we consider the behaviour of the isothermal com-
pressibility. This problem is related to a liquid exhibiting
excess scattering from Fischer clusters (see [190]). A liq-
uid with Fischer clusters exhibit strong excess scattering.
However, the isothermal compressibility does not exhibits
any anomaly. This cannot be explained if we consider that
the excess scattering comes directly from density fluctu-
ations. This apparently strange phenomenon can be nat-

urally explained by accepting an additional order param-
eter, which is coupled with density. Then the isothermal
compressibility should be given by

KT =
1

kBTρ2

∫
dr〈ρr(r)ρr(0)〉, (41)

where δρr = δρ∗ + cδS∗ is the real fluctuation of density
under the coupling to bond ordering. For a small value of
|c|, the major contribution to KT comes from the direct
density-density correlation. On the other hand, the scat-
tering intensity mainly comes from fluctuations of bond
order parameters, which may be dominant near the mean-
field spinodal of S ordering. Thus, we suggest that there
is a possibility of the apparent violation of the compress-
ibility sum rule, which may be due to a) the existence of
an additional hidden order parameter, namely, bond order
parameter, which has critical-like fluctuations, and b) its
direct coupling to the refractive index n. However, near the
second critical point, the contribution from fluctuations
of S may finally become dominant even in the isothermal
compressibility. We should note that in the above scenario
we cannot deny a possibility that the hidden order param-
eter is associated with the concentration fluctuations of
impurities. As in the case of water, KT may also exhibit
an anomalous increase, due to the increase in the number
density of locally favoured structures, S, itself (not due to
its fluctuations).

Finally, it is worth noting that critical-like fluctuations
and the steep increase in the susceptibility, which might
be due to LLT, were recently reported for supercooled
yttria-alumina melts [157,158,201,202].

4.8 Comparison of our model with experiments in
molecular liquids

4.8.1 LLT in pure molecular liquids

Kivelson and coworkers found the following unusual phe-
nomena in their study of a supercooled state of TPP [203–
205]. If TPP is cooled rapidly enough, it first enters into
a supercooled liquid state below the melting point Tm as
usual liquids, and then into a glassy state, which we call
glass I. This supercooled liquid (liquid I) behaves as a
typical fragile glass former. On the other hand, if TPP
is quenched to a certain temperature between 213K and
223K and then anneal it at that temperature, a new ap-
parently amorphous phase (the so-called glacial phase) is
nucleated in a supercooled liquid and grows with time.
Eventually, the entire system transforms into the glacial
phase. Surprisingly, the glacial phase is apparently an op-
tically transparent homogeneous amorphous phase, but it
is obviously different from ordinary liquid (liquid I) and
glass (glass I).

This finding stimulated intensive experimental re-
searches on this unusual phenomenon. However, the na-
ture and origin of the glacial phase has been a matter
of debate and many different, even controversial, expla-
nations have been proposed on it. The glacial phase was
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thought to be a new amorphous phase [204,206–208] or
a highly correlated liquid [209]. However, the most re-
searches have shown that the glacial phase has some crys-
tallinity or anisotropy. Hence the newly formed glacial
phase appears to be neither a standard glass nor liquid. It
is this that has led researchers to conclude that the glacial
phase is actually some type of defect-ordered crystals (ori-
entationally disordered or modulated crystal) [204,205,
210], liquid crystal [211], plastic crystal [211,208], aborted
crystallization [163–169], or nano-clustering [212].

We recently succeeded in directly observing the pro-
cess of liquid-liquid transition with optical microscopy for
two pure organic liquids, triphenyl phosphite (TPP) [28,
29] and n-butanol [30]. TPP has been known to show an
anomalous transition from a supercooled liquid to the so-
called glacial phase [204]. On the basis of our experimen-
tal results, we concluded that this transformation is ac-
tually a transition from a supercooled state of liquid I to
a glassy state of liquid II. The situation is complicated
by the presence of micro- or nano-crystallites, which are
formed during the transformation. Indeed, this same phe-
nomenon was interpreted as aborted crystallization by He-
doux et al. [163], as mentioned in the introduction of this
section. We confirmed that LLT accompanies the forma-
tion of micro- or nano-crystallites at rather high temper-
atures (above 214K), but at low temperatures (e.g., at
212K) there is no indication of crystallization and only
LLT takes place.

In the case of n-butanol, on the other hand, crystal-
lization always occurs and the situation is a bit more
complicated. For example, Ramos and his coworkers re-
cently claimed that the phenomena observed in n-butanol
is aborted crystallization and not LLT [170,171], but we
argue that it is LLT on the basis of the kinetic features of
the transformation process.

Here we show the typical kinetic processes of LLT ob-
served in TPP in fig. 20: NG-type and SD-type LLT. The
process is basically consistent with our simple kinetic the-
ory. The heat evolution is also measured during LLT (see
fig. 21), which is also consistent with our model that as-
sumes the formation of locally favoured structures with a
lower local free energy. According to our model, the heat
evolution is proportional to the development of the bond
order parameter S, since the heat is released in the pro-
cess of the formation of locally favoured structures. This
was supported by the structural study of the process of
LLT by X-ray scattering [213].

4.8.2 Glass transition and the fragility of liquid I and II

We confirmed that in both TPP and n-butanol, liquid I
transforms into a glassy state of liquid II. The situation
can be understood in the schematic state diagram of LLT
for TPP on the T -S plane (see fig. 22), which includes the
S-dependent glass transition line. We measured the glass
transition temperature of liquid I and II. Figure 23 shows
the glass transition behaviour of liquid I, liquid II, and liq-
uid during the SD-type liquid-liquid transformation. We

Fig. 22. (Colour on-line) Schematic T -S phase diagram of
TPP. The dashed and dot-dashed lines are spinodal and bin-
odal lines, respectively. CPS is a gas-liquid-like critical point
of the bond order parameter S, which might exist at a high
pressure. A dotted curve is the glass transition line Tg(S) and
the gray region corresponds to a glassy state. TBN and T I

SD

represent the binodal temperature and the lower spinodal tem-
perature at atmospheric pressure, respectively. Note that the
liquid I → liquid II (glass II) transition inevitably accompa-
nies vitrification, which makes a glass II state non-equilibrium
in the sense that both ρ and S cannot reach their equilibrium
values.

can see that liquid I has a lower glass transition tempera-
ture Tg than liquid II [28] and liquid I is more fragile than
liquid II [28,214]. The width of the glass transition range
of glass II (∼ 23K) is much broader than that of glass I
(∼ 4K) [28]. We can see the fragility monotonically de-
creases with the transformation, indicating the fragility is
negatively correlated with the number density of locally
favoured structures S [214]. In other words, the fragility is
controlled by the same order parameter controlling LLT.
These findings are difficult to explain by the scenario of
aborted crystallization.

Liquid I is more fragile than OTP, whereas liquid II is
stronger than B2O3. This provides us with information on
the nature of two liquids associated with their glass tran-
sitions: Liquid II is stronger than liquid I. This conclusion
is consistent with the fact [206,207,209] that the temper-
ature dependence of the structural relaxation time τα is
super-Arrhenius (typical for fragile liquids) for liquid I,
while it is almost Arrhenius (typical for strong liquids) for
liquid II. A similar difference in the fragility between two
liquid states of liquid-liquid transition was also reported
for other materials [46,215,216,147]. Thus, this may be a
common feature of liquid-liquid transition.

With the above-mentioned transition map of the struc-
tural relaxation time for liquid I and II, we can also nat-
urally explain the observed temperature dependence of
the complex dielectric constant [209,211] and its tempo-
ral change during the transformation from liquid I (nor-
mal liquid) to glass II (the glacial phase) [217]. During the
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Fig. 23. The reversible part of the heat flow (dH ′/dt) during
the heating process of TPP annealed at 213K for ta = 0 s,
28800 s, and 36000 s. The measurements were made by AC
calorimetry. A sample was heated with an alternating rate,
whose average was 2K/min and whose period and amplitude
were 30 s and 0.16 K, respectively. A different value of ta means

a different value of S̃: For ta = 0 s, 28800 s, and 36000 s, S̃ is 0,
0.66, and 0.95, respectively. We can clearly see that the step-
like change near Tg becomes broader with an increase in ta:

ΔTg = T H
g − T L

g increases with ta. This figure is reproduced
from fig. 2 of [214].

transformation from liquid I to glass II, the structural re-
laxation time enormously slows down and its distribution
becomes broader [217]. Upon the transformation of liquid I
to glass II, the real part of the complex dielectric constant
should decrease if the structural relaxation time becomes
slower than the measurement frequency. Such behaviour
was indeed observed [209,211]. One remaining question
is why the distribution of the structural relaxation is so
broad for liquid II. For ordinary glass formers, it is well es-
tablished that the distribution of the structural relaxation
time is narrower for a stronger liquid. The extremely broad
distribution for strong liquid II is thus unusual [206]. This
unusual behaviour might be related to the presence of lo-
cally favoured structures, but needs further studies.

The dependence of the fragility on S is consistent with
our scenario of glass transition (see below), provided that
locally favoured structures formed in TPP are not con-
sistent with the symmetry of the equilibrium crystal and
disturb crystallization. Our study clearly indicates that
the fragility is not a material-specific quantity; namely,
it is not related to the type of the interparticle poten-
tial in a direct manner. This result may shed new light
on a fundamental question of what physical factor con-
trols the fragility of liquid and contribute to our deeper
understanding of liquid-glass transition.

4.8.3 LLT in a mixture of TPP with other liquids

It is interesting to consider how LLT of a liquid affects the
phase behaviour, or the miscibility, of its mixture with
another liquid. This problem was discussed experimen-
tally [218], theoretically [219] and numerically [220]. Re-
cently we found that LLT can be observed in mixtures of
TPP with other liquids, and in some cases LLT induces

Fig. 24. (Colour on-line) Demixing induced by LLT in TPP-
diethyl ether mixtures. (a-d) Pattern evolution during the
transformation at 209 K for φd = 2.98%. (a) t = 80min,
(b) 100 min, (c) 150 min, and (d) 400 min. (e-h) Pattern evo-
lution during the transformation at 209K for φd = 4.45%.
(e) t = 20 min, (f) 25min, (g) 70min, and (h) 112min. The
scale bar corresponds to 100 μm. (i) φd-dependence of T II

g .
T II

g decreases monotonically with an increase in φd below 4%,
whereas T II

g keeps almost constant for φd ≥ 4%. This indicates
that phase separation occurs for φd ≥ 4%, which is consistent
with microscopic observation ((a)-(h)). (j) Temporal change of
Tg (squares) and the intensity of Raman peak at 3068 cm−1

(circles) for φd = 8% and at T = 209K. Note that this peak
comes from TPP and does not from diethyl ether. The insets
of (j) are the intensity maps for the peak at 3068 cm−1 mea-
sured at t = 200 s (left) and at t = 1800 s (right). The area size
and the spatial resolution of the left inset are 36 μm × 36 μm
and 6 μm × 6 μm, respectively. On the other hand, those of
the right inset are 100 μm × 100 μm and 3 μm × 3 μm, respec-
tively. At t = 200 s, the speed of LLT is still fast and thus we
needed to measure the 2D intensity map very quickly. This is
the reason why the image size is smaller and the spatial resolu-
tion is poorer there. More reddish (bluish) colour means higher
(lower) intensity, i.e., a higher (lower) fraction of TPP. This
figure is reproduced from fig. 2 of ref. [221].

phase separation [221]. This indicates that the miscibil-
ity of liquid I with other liquids is different from that of
liquid II with them.

Figures 24(a)-(d) and (e)-(h) show pattern evolution
in a mixture of TPP and diethyl ether at 209K for φd =
2.98% and 4.45%, respectively, where φd is the volume
fraction of diethyl ether. The early-stage pattern evolution
looks the same between the two cases. The amplitude of
fluctuations grow with time while keeping the character-
istic length constant in the early stage of the transforma-
tion, which is characteristic of the Cahn’s linear regime of
SD-type LLT (see figs. 24(a) and (e)) [29]. However, the
analysis of the process may require a special care since
an image obtained by phase contrast microscopy gener-
ally loses long-wavelength components of the spatial fluc-
tuations of the refractive index and thus has to be cor-
rected by the proper optical transfer function. In the later
stage, the domain size coarsens with time (see figs. 24(b)
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and (f)) and afterwards the system becomes homogeneous
again (figs. 24(c) and (g)), which is typical of SD-type
LLT [29,198,222]. However, unusual behaviour is observed
for φd = 4.45%: Reappearance of droplets after the ho-
mogenization. We found that such behaviour is observed
only for φd ≥ 4%, and not for φd ≤ 3%, and the final
volume fraction of droplets (fig. 24(h)) increases with an
increase in φd. This can be explained by a scenario that
phase separation occurs for φd ≥ 4%, accompanying the
emergence of diethyl-ether-rich droplets.

To confirm this scenario, we annealed samples at 209K
for 10 hours to complete the process of LLT and measured
the glass transition behaviour. We found that T II

g (φd) de-
creases with an increase in φd below φd = 4%, whereas
it does not depend on φd for φd ≥ 4% (fig. 24(i)). This
indicates that phase separation indeed takes place for
φd ≥ 4%, resulting in the formation of TPP-rich and
diethyl-ether-rich phases. Each phase should have its own
Tg, but Tg of the diethyl-ether-rich phase may be located
at too low a temperature, which is out of the range of our
DSC measurements. Thus, only Tg of the TPP-rich phase
was measured.

Furthermore, we investigated the spatial distribution
of the two components of the mixture by using micro Ra-
man spectroscopy measurements, whose spatial resolution
is 1μm×1μm. We used the Raman peak at 3068 cm−1 as a
fingerprint, since this peak exists only for TPP (not for di-
ethyl ether) and is not affected by LLT [163]. We followed
the temporal evolution of the peak intensity at a fixed
point of the sample of φd = 8% at 209K. The results are
shown in fig. 24(j). The intensity is almost constant before
t = 450 s, indicating that the fraction of TPP at this point
is constant with time. Then, the intensity increases con-
tinuously. We also measured a peak at 3020 cm−1, which
belongs to diether ether, at the same point. The intensity
of this peak does not change until 450 s, but decreases after
450 s. Both facts suggest that phase separation starts to
take place at t = 450 s and our measurement spot belongs
to a TPP-rich domain after the initiation of the phase
separation. Using the fact that the peak intensity is pro-
portional to the molecular fraction, we can estimate the
local volume fraction of diethyl ether, φd, after the phase
separation. This result tells us that φd changes from the
initial value, 8%, to the final one, 5%, which coincides
well with the above-mentioned threshold φd, above which
phase separation is induced by LLT. We also performed
real-time 2D Raman microscopy measurements (the insets
of fig. 24(j)). We can see that the system is homogeneous
at t = 200 s, but phase separates into TPP-rich and TPP-
poor regions at t = 1800 s. This confirms the occurrence
of LLT-induced phase separation. The temporal change of
Tg during this process (see the squares of fig. 24(j)) also
supports our scenario.

This LLT-induced phase separation may provide a new
route for triggering phase separation of a binary liquid
mixture. We also revealed that toluene is miscible with
both liquid I and II of TPP and adding a small amount of
toluene to TPP transforms the LLT of pure TPP, where
liquid II is in a glassy state, to a true LLT in the sense
that both liquids I and II are in a liquid state with fluidity.

This provides an example of a “true” liquid-to-liquid tran-
sition in molecular liquids. This transition accompanies a
drastic change in the transport properties (viscosity and
diffusivity) by many orders of magnitude. Thus, it may be
used as a liquid whose transport properties can be changed
drastically.

LLT has so far attracted attention purely from a scien-
tific viewpoint, but the above finding may open new possi-
bilities for the control of fluidity, which governs flow, diffu-
sion, and chemical reaction rate, and the control of chemi-
cal miscibility and reactivity of a liquid without modifying
its chemical structure.

It is also worth noting that mixing a liquid with an-
other liquid possessing LLT will add considerable variety
to liquids exhibiting LLT, which may be important for fu-
ture applications of LLT. Furthermore, LLT in a mixture
can be used to seek LLT in a single-component liquid,
which is difficult to access experimentally, for example,
due to crystallization or glass transition, as in water. Mix-
ing another component may reveal LLT hidden by these
phenomena (see below).

4.8.4 LLT in a mixture of water and glycerol

One of the important remaining questions is whether LLT
exists in pure water or not, as discussed in sect. 3.13. Un-
like the cases of TPP and n-butanol, experimental verifi-
cation of LLT in water is quite difficult due to the interfer-
ence by instantaneous crystallization. There may still be
a few routes to access a hidden LLT in water, if it exists.
One strategy is to use water confined in nm-size pores [223,
224] or to use protein-hydration water [225]. These works
show evidence suggestive of a fragile-to-strong liquid tran-
sition and LLT. However, these experiments inevitably
suffer from criticisms that water confined into a nm-scale
space surrounded by a wall is intrinsically different from
bulk water because of the presence of water-wall inter-
actions and the reduced dimensionality [226–228]. It was
shown [226], for example, that i) without a special care we
cannot conclude even whether water inside a nm-size pore
is liquid or solid or amorphous or crystalline and ii) the
interaction with the wall makes the confined state inhomo-
geneous. Since the presence of the amorphous-amorphous
transition in bulk does not prove the presence of LLT ei-
ther (see above), it may be fair to say that we do not have
any firm experimental evidence for LLT in water yet, al-
though there are many implications.

Recently we took a different strategy: mixing water
with glycerol to avoid crystallization of water. Note that
glycerol is a well-known non-crystallizable liquid and can
cause strong frustration against water crystallization. In
an aqueous glycerol solution we found the direct experi-
mental evidence for genuine (isocompositional) LLT with-
out accompanying phase separation [230]. We confirmed
that liquid I transforms via the two types of kinetics char-
acteristic of the first-order transition of a non-conserved
order parameter, NG and SD, towards homogeneous liq-
uid II. The processes are essentially the same as those
observed in TPP. The state diagram of water/glycerol
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Fig. 25. (Colour on-line) Glycerol concentration vs. temper-
ature (c-T ) state diagram of water/glycerol. TSD: LLT spin-
odal temperature (black filled circles); TgI: the glass transition
temperature of liquid I (blue filled triangles). For pure wa-
ter (c = 0), we use the widely accepted value of 136 K [42]
for TgI; TgII: the glass transition temperature of liquid II (red
filled triangles). Dot-dashed line indicates TgII of pure liquid
II without ice Ic, provided that liquid II contains φc = 17%
of ice Ic, which should result in the increase in the glycerol
mole fraction of liquid II by 6.4% (see SI for the related dis-
cussion); TH: the homogeneous nucleation temperature (violet
open circles) measured for the cooling rate of 100 K/min (see
SI for the standard TH measured for an emulsified sample);
TX: the transition temperature from ice Ic to Ih, which was de-
termined by microscopy observation (green filled diamonds);
Tm: the melting (liquidus) temperature (black filled squares:
our data; open squares: the data of Lane [229]). We make a
linear extrapolation of TSD to estimate the position of a hy-
pothetical critical point (CP) (light blue open circle), since we
cannot access TSD for c < 0.13 due to rapid nucleation of ice
Ih before reaching the final target temperature in the quench
process. For c > 0.19, on the other hand, the kinetics of LLT
drastically slows down, which also prevents us from accessing
LLT during the observation time. Finally we note that the TSD

we measured is the stability limit of liquid I, and we could ac-
cess neither the binodal line nor the stability limit of liquid
II because of interference by ice crystallization. This figure is
reproduced from fig. 4 of ref. [230].

mixtures is shown in fig. 25. The liquid-solid phase di-
agram of water/glycerol mixtures is very similar to the
T -P phase diagram of pure water, which also has a V-
shape. We found that liquid I and II, differ in the density,
the refractive index, the structure, the hydrogen bonding
state, the glass transition temperature, and the fragility.
We revealed that this transition is mainly driven by lo-
cal structuring of water rather than glycerol, suggesting
a possible link to LLT in pure water. In relation to this,
it was recently pointed out by Towey and Dougan [231]
that glycerol molecules act to “pressurize” water. This fur-
ther suggests a link between a water/glycerol mixture and
pure water. However, further study is necessary to clarify
whether water has LLT without glycerol or not.

Fig. 26. (Colour on-line) Heterogeneous nucleation of liquid
II on various solid surfaces at 220K. (a) Time evolution of
LLT in the presence of a TPP crystal, which was observed
with polarizing microscopy under the crossed Nicols condition.
In the beginning (0 min), we observe only the TPP crystalline
spherulite with the Maltese cross pattern. Then, the layer of
liquid II, which has no birefringence, is formed on the surface
of the TPP spherulite (40 min) and its thickness linearly grows
with time (60 min, 80 min) (see (f)). (b) Time evolution of LLT
in the presence of a PET (poly(ethylene terephthalate)) sur-
face. In this case, LLT proceeds while forming a thin film of
liquid II: compete wetting. White dashed lines indicate the lo-
cation of the surface. (c), (d) Time evolution of LLT in the
presence of PTFE (poly(tetrafluoroethylene)) (c) and Au (d)
surface. Nuclei of liquid II is preferentially formed on the sub-
strates with a finite contact angle (θ ≤ 90◦): partial wetting.
(e) Time evolution of LLT in the presence of an Al surface. Nu-
clei of liquid II do not have any contact to the Al surface and
normal NG-type droplet growth in bulk was observed: non-
wetting. The scale bars correspond to 10 μm. This figure is
reproduced from fig. 1 of ref. [232].

4.8.5 LLT and wetting phenomena

LLT of a liquid may also affect its wetting properties to
a substrate. We found that the wettability of liquid I is
different from that of liquid II [232]. These results show
that liquid I and liquid II differ in the density, the refrac-
tive index, the glass transition temperature, the fragility,
the miscibility with other liquids, and the wettability to a
substrate.

Here we show NG-type LLT (TSD < T < TBN, where
TBN is the binodal line of LLT, below which liquid I be-
comes metastable to liquid II) for a case of complete wet-
ting. Figure 26(a) shows pattern evolution during hetero-
geneous nucleation on a TPP crystalline surface at 220K.
Before the temperature quench (t < 0), the spherulite
of TPP crystal with optical birefringence (manifested by
the Maltese cross) grows in the homogeneous liquid I at
235K. Immediately after a temperature quench to 220K,
LLT is initiated and the layer of liquid II is formed pref-
erentially on the surface of the TPP crystalline spherulite
(t = 40min). Then its thickness linearly grows with time
(t = 60min, 80min) (see below). Figure 26(b) shows
the process of heterogeneous nucleation of liquid II on a
poly(ethylene terephthalate) (PET) surface at 220K. Un-
like usual NG-type transformation, LLT proceeds while
accompanying the formation of a thin film of liquid II
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on the solid surface for both TPP crystal and PET case:
complete wetting. In these cases, nucleation occurs pref-
erentially on the solid surfaces. Figures 26(c) and (d)
show the processes of heterogeneous nucleation of liquid
II on poly(tetrafluoroethylene) (PTFE) and Au surfaces
at 220K, respectively. In these cases, we observe partial
wetting behaviour. We can see that the nucleation rate is
much higher on the surface than in bulk. This behaviour
is consistent with the typical heterogeneous nucleation be-
haviour on a wettable substrate, which is known for other
types of phase transitions such as crystallization and phase
separation [1]. Finally, for Al we observe non-wetting be-
haviour (see fig. 26(e)).

We revealed that significant surface wetting effects
on NG-type LLT are induced by specific interactions
(weak hydrogen bonding) between substrates and TPP
molecules [232]. This “bottom-up” wetting mechanism of
a microscopic nature is markedly different from the ordi-
nary macroscopic mechanism responsible for wetting ef-
fects on phase separation [233], where dispersion forces
play a crucial role. This has an interesting implication on
the roles of specific interactions in bond orientational or-
dering. We also demonstrate critical point wetting, i.e., a
partial-to-complete wetting transition when approaching
TSD. This critical-point-wetting-like behaviour [234] may
be regarded as evidence for the criticality associated with
LLT, although the extrapolation is too large to draw a
definite conclusion. The interfacial tension between liquid
I and II decreases in a manner consistent with the mean-
field criticality [29]. This further supports that the tran-
sition observed in TPP is truly “liquid-liquid transition”.

Unlike the significant change of the kinetics for NG-
type LLT by a substrate, we reveal that SD-type LLT is
not affected by surface wetting effects. This is markedly
different from wetting behaviour observed in spinodal de-
composition of a system of a conserved order parame-
ter [233], and can be explained by the non-conserved na-
ture of the order parameter governing LLT.

These findings may have a significant implication not
only for the mechanism of LLT itself but also for applica-
tions of LLT.

Our results show that we can use solid substrates or
particles as a catalyst to promote LLT in a metastable
region. This may open up novel possibilities not only of
spatial patterning of liquid I and liquid II using chemically
or topologically patterned surfaces but also of controlling
the kinetics of LLT. The generality of the bottom-up wet-
ting mechanism for LLT in atomic liquids, oxides, and
chalcogenides is an interesting topic of the future study.

4.8.6 LLT or other phenomena: the nature of the glacial
phase in TPP

As discussed above, there have been various proposals for
the nature of a new amorphous state of TPP. Similarly,
the phenomena observed in n-butanol were recently in-
terpreted as a consequence of the formation of micro- or
nano-crystallites, contrary to our scenario [235,170,171].

As shown above, we confirmed [28] that the glacial
phase formed below 212K is a homogeneous glassy state

of liquid II, namely, pure glass II, whereas that formed
above 213K is a mixture of glass II and micro-crystallites.
This absence of micro- or nano-crystallites was confirmed
particularly for liquid II made below 212K. The frac-
tion of micro-crystallites decreases if an annealing tem-
perature Ta approaches to 212K, and becomes almost
zero (undetectable) below 212K [28]. This lower bound
temperature for nano-crystallites formation seems to have
sample-dependence. In some cases the temperature is lo-
cated around 215K, whereas in other cases it is around
212K for TPP. So this temperature may be determined
independently from LLT, e.g., by impurities in a sample.
In the case of n-butanol, micro-crystallites were observed
even in the lowest temperature below TSD. In n-butanol,
we cannot access a state free from crystallization, probably
because TSD is located only slightly above Tg. Nonethe-
less, we believe that the observed phenomena cannot be
explained by crystallization alone.

The peculiar crystallization behaviour accompanied by
LLT may be a consequence of three factors: The first
factor is a lower surface tension between crystal and
liquid II than that between crystal and liquid II (see
fig. 26(a)) [232]. This should lower a barrier for crystal
nucleation and lead to the large increase in the crystal
nucleation frequency. The second factor is a stronger frus-
tration effect of locally favoured structures against crys-
tallization in liquid II than in liquid I. The third factor
is that the transformation of liquid I to glass II prevents
further growth of micro-crystallites. These three factors
may be responsible for the formation of micro- or nano-
crystallites, which should be confirmed in the future.

Thus, we argue that all the confusions concerning the
nature of the glacial phase may originate from that the
glacial phase prepared above 213K, which is actually a
mixture of glass II and micro-crystallites, has been misin-
terpreted as either a homogeneous phase with anisotropy
or a mixture of liquid I and micro-crystallites or nano-
clusters. For example, the signatures indicative of nano-
crystals or defect-ordered crystals may arise from the
micro-crystallites embedded in the glass II. Hédoux et
al. [163] reported that the Raman spectra can be de-
composed into those of the supercooled liquid and crys-
tals and they concluded that a glacial phase is com-
posed of nano- or micro-crystallites possibly mixed with
a fraction of untransformed supercooled liquid (liquid I in
our terminology), depending upon the annealing temper-
ature. This conclusion is partly consistent with our pic-
ture, but we argue that it should be decomposed into
those of glass II and crystals and not into those of liq-
uid I and crystals. We stress that this scenario reason-
ably explains the results of X-ray scattering [204,163] and
neutron scattering [210,212,164,167] and those of Raman
scattering [164,166,168,169] for TPP and similar results
for n-butanol [235,170,171].

Finally we consider spontaneous heat evolution dur-
ing annealing, which is observed by isothermal differential
scanning calorimetry measurements [209,165,217]. This
should reflect both liquid-liquid transformation and crys-
tallization above 213K, according to our scenario. To ex-
tract the information on the kinetics of LLT from such
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data, we need to subtract the contribution of crystalliza-
tion. Once this is properly done, we can deduce the time
evolution of the bond order parameter S. Results of such
analyses and detailed comparison of them with the kinet-
ics of liquid-liquid transition deduced from pattern evolu-
tion will be reported in the future.

Thus, we conclude at this moment that the exist-
ing data on the glacial phase of TPP can be naturally
explained by our scenario of liquid-liquid transition, al-
though further careful studies are still necessary to derive
a definite conclusion.

4.9 Link between LLT and polyamorphism

4.9.1 Elastic effects on a polyamorphic transition

Convincing experimental evidence for polyamorphism has
been reported for many liquids including water [161,40,
180], Si [144,145], silica [236–238], and metallic glasses
[239]. Typically there are low-density and high-density
amorphous states. The low-density one is formed at am-
bient pressure, whereas the high-density one is formed by
applying a pressure to either an amorphous or a crystal
state prepared at ambient pressure. When pressure is re-
duced, a high-density amorphous state transforms back to
a low-density one at a certain pressure. This hysteresis be-
haviour is interpreted as a manifestation of the first-order
nature of the transition. However, we point out that this
transition between the two non-ergodic states is far more
complicated than liquid-liquid transition from the follow-
ing reasons. It is not easy to figure out the role of the co-
operativity (J) in such a solid-state transition because of
the non-ergodic nature of the transition. Furthermore, the
link between the transition and the underlying free energy
is obscured by the effects of mechanical stress inevitably
involved upon the transition. It is not easy to separate
the thermodynamic factors and the mechanical ones for
pressure-induced phase transitions in a non-ergodic state.

Here we consider this problem in more detail. The stan-
dard elastic theory of isotropic matter tells us [124] that
the elastic energy is given by

fel =
∫
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where B is a bulk modulus, μ is a shear modulus, u is the
deformation vector, and d is the dimensionality. Note that
there is a coupling between the bond order parameter (S)
and ∇ · u, which is given by the following free energy in
the lowest order:

fint =
∫

dr α(S∇ · u),

where α is the coupling constant. For water, α should be
negative. The total free energy should include these elas-
tic contributions. This causes a marked difference between

solid-state and liquid-state transitions. In addition to the
possible differences in the values of ΔE, Δv, and Δσ, and
J between these two cases, thus, we need to include the
above-described elastic terms into our free energy for a
solid case. As the result, for example, there should be an
elastic energy barrier in addition to a barrier coming from
the interfacial energy, for a phase-transformation (nucle-
ation) process in a solid state. Its importance can, for
example, be recognized from the fact that HDA of wa-
ter breaks in pieces upon the transformation into LDA
while releasing mechanical stress [40,42]. Since the elas-
tic energy is proportional to the volume, the elastic terms
should significantly increase the nucleation barrier, which
leads to a large difference in the location of the apparent
phase-transition lines between solid-state thermomechan-
ical and liquid-state thermodynamic transitions.

4.9.2 Case of water as an example

As an example, we consider the relationship between a
possible liquid-liquid transition of liquid water and the
corresponding amorphous-amorphous transition of solid
amorphous water. Spinodal-like lines associated with the
stability limits of LDA and HDA are often used to de-
termine the location of a liquid-state transition and the
corresponding critical point. In relation to the differ-
ence between solid-state and liquid-state transitions, we
point out the following fundamental problems: i) Amor-
phous ices are not in an equilibrium state, but in a non-
equilibrium glassy state. Thus, we cannot apply an equi-
librium liquid-state theory to predict the solid-state phase
transition between these non-equilibrium amorphous ices,
as described above. A solid amorphous state may even
depend upon the history of sample preparation because
of the non-equilibrium nature of the state. ii) The en-
tropy difference between normal-liquid structures and lo-
cally favoured structures in a liquid state should be sig-
nificantly larger than that in a glassy state, as described
above, since in a glassy state a free volume, or the transla-
tional and rotational degrees of freedom, is very small for
both types of amorphous ices (i.e., small Δσ). Thus, there
may be no direct connection between a liquid-state tran-
sition and a solid-state transition even if we assume the
equilibrium nature for a solid-state transition. iii) More
importantly, the solid-state phase transformation with a
volume change inevitably accompanies the elastic defor-
mation [124], as discussed above.

The existence of two amorphous ices might be a man-
ifestation of the existence of a second critical point [40].
However, the above consideration suggests that the exper-
imental data of an amorphous-amorphous transition may
not necessarily be useful for determining the location of
a liquid-state critical point in a straightforward manner.
Then, how can we determine its location experimentally?
A search of a kink in the melting curve of ice crystals [180]
is a very promising way, since it reflects the location of a
“liquid-liquid” transition line (see fig. 19). Further care-
ful studies are required to prove the existence of a hidden
second critical point and specify its location.
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4.9.3 Possibility of amorphous-amorphous transition
without cooperativity

Here we consider a fundamental problem on the nature
of amorphous-amorphous transition, which takes place in
a non-ergodic state. Amorphous-amorphous transition is
often believed to be linked to thermodynamic liquid-liquid
transition in a supercooled state. The first-order-like dis-
continuous nature of the transition is regarded as evidence
supporting this picture. In relation to this, it is worth
considering a situation that there are two states of liquid
structures, but without any cooperativity (i.e., J = 0 in
eq. (5)). In a liquid state, it is rather easy to see whether a
transition is of cooperative nature or not. In a non-ergodic
state, however, it is rather difficult to see whether the tran-
sition induced by pressure is linked to the thermodynamic
first-order transition with cooperativity or the mechani-
cally induced transition between the two states without
cooperativity. This implies that the first-order-like tran-
sition between two amorphous states may not necessarily
be linked to the thermodynamic LLT. The consequence of
the cooperativity in a solid-state amorphous-amorphous
transition is an interesting issue for further investigation.

5 Glass transition

When crystallization is kinetically avoided, a liquid in-
creases its viscosity steeply upon cooling and eventually
becomes elastic or plastic when passing through the glass
transition temperature Tg. So a liquid gradually trans-
forms to a solid-like state at Tg. On the other hand, a
discontinuous first-order liquid-solid transition takes place
upon crystallization. In this case, the elasticity originates
from the long-range translational order with periodicity.
In a crystal, thus, a motion of a single particle must in-
evitably accompany all the other particles, if we assume
perfect order. In a glass, on the other hand, the situa-
tion is far less obvious and the origin of elasticity is not
so clear (see sect. 5.16 and [240,241] for review). Further-
more, the elasticity appears rather gradually in glass tran-
sition, accompanying the continuous slowing down of the
mechanical (or structural) relaxation time τα. The tran-
sition is from a liquid to a solid via a viscoelastic state.
There is also ageing (slow temporal change of the physi-
cal properties) in a glassy state, reflecting its intrinsically
non-equilibrium nature. Unlike a liquid-crystal transition,
there is no evident change in the liquid structure through
Tg: The structural relaxation time τα, or the viscosity η,
increases by more than ten orders of magnitude while ac-
companying little change in the liquid structure probed by
the scalar density field (e.g., by the static two-point den-
sity correlator). The origin of slow dynamics associated
with glass transition has been a long-standing fundamen-
tal problem in condensed matter physics.

In general, when a liquid is cooled, it is either crystal-
lized or vitrified. Except liquids with quenched disorder,
such as atactic polymers or polydisperse colloids, a single-
component liquid can in principle crystallize below the

Fig. 27. (Colour on-line) Schematic figure explaining the be-
haviour of liquid upon cooling. The liquid becomes a metast-
able supercooled state below the melting point Tm and fur-
ther cooling leads either to crystallization or to glass transi-
tion. The former takes place at the crystallization temperature
TCRY, whereas the latter at the glass transition temperature
Tg. The former is a thermodynamic phase transition, but the
latter is a kinetic transition. The key fundamental question
here is whether the glass transition behaviour is controlled by
the same free energy as that for crystallization or a special free
energy?

melting point Tm without accompanying inhomogeneiza-
tion (phase separation). Glass transition is thus observed
only when crystallization is “kinetically” avoided. This is
suggestive of a deep link between crystallization and vit-
rification. However, most of previous approaches did not
consider crystallization to be important for the physical
description of vitrification itself. In these approaches, ei-
ther a purely kinetic origin for dynamic arrest is sought or
the special free energy describing the vitrification branch
is newly introduced. In both cases, the crystallization
branch is simply ignored, as we will see below. This is
probably because people who are interested in glass tran-
sition are not interested in the crystallization branch but
only in the glass transition branch (see fig. 27). Another
reason may come from our intuition linked to a different,
but related phenomenon, jamming transition. When we
consider slowing down of motion of people in a packed
train, we do not care about crystallization. This is also
related to the fundamental question concerning the link
between glass transition and jamming transition.

More than a decade ago, however, we proposed [17,31,
32,242–244] that crystallization should be regarded as the
basis for understanding glass transition, more specifically,
vitrification can be regarded as frustration on the way to
crystallization. We argued that frustration against crys-
tallization is a key to understanding the physical origin of
glass transition: a supercooled liquid is controlled by the
same free energy of the system, which leads to crystalliza-
tion under the influence of frustration effects (see fig. 27).
In this sense, jamming transition (without being driven
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mechanically) may be essentially different from glass tran-
sition, although there are many similarities. The absence
of thermal noises makes jamming transition of “mechani-
cal” character essentially different from glass transition of
“thermodynamic” character in our opinion. Below we ex-
plain our two-order-parameter model of liquid-glass tran-
sition.

5.1 Background

5.1.1 Major previous approaches to glass transition

Our approach to the problem of glass transition based
on the two-order-parameter model was already reviewed
briefly in sect. 2. Here we mention other popular theoreti-
cal approaches (on the details of these approaches, please
refer to [1,245,48,246,49,52,53]). Here we classify previ-
ous theoretical approaches to glass transition into the fol-
lowing five types:

A) Approaches such as free-volume theory [247], mode
coupling theory [50], and trap model [248] focus on
the slowing down of the dynamics while approaching
Tg. According to the mode-coupling theory (MCT),
the density-density correlation function is the main
mode for slow relaxation in a glass-forming liquid. The
free-volume theories also suggest that the transport
in a supercooled liquid is controlled by the slow re-
laxation of the density fluctuations. The geometrical
constraints due to dense packing on molecular motion
have been expressed in terms of a few different con-
cepts, such as free volume and caging-induced mem-
ory effects. Among these theories, MCT provides a
scenario which directly bridges macroscopic and mi-
croscopic structural relaxation [50,249]. According to
MCT, the blocking of particle motion by the neigh-
bouring particles, which is called “caging”, is the es-
sential origin of the slowing down of “macroscopic”
structural relaxation. Thus, density fluctuations whose
characteristic lengthscale is the cage size (∼ particle
size d) slows down and is eventually frozen. Because of
this microscopic nature of the mechanism of slowing
down, MCT has been considered to be a microscopic
or first-principles theory that can explain various key
aspects of glass transition. It was also shown that MCT
has a deep link to the trap model [250].

B) In the Adam-Gibbs theory [251], on the other hand, it
is assumed that under a dense packing condition the
motion of a particle becomes possible only when par-
ticles in its surrounding region move in a cooperative
manner. A number of particles required for a collec-
tive rearrangement is a manifestation of the growing
degree of dynamical correlation in a supercooled liq-
uid. This is expressed by the concept of cooperatively
rearranging regions.

C) There are also approaches putting a focus on lo-
cal relaxation mechanisms. Chain-like excitation [252],
single-particle barrier hopping [253], and elastically
constrained motion [254]. In these models, localized re-
laxation events become more and more difficult with a

decrease in temperature and the activation energy for
the relaxation becomes larger and larger. For example,
in the shoving model [254] the activation energy is as-
sociated with elastic cost for shoving the surrounding
particles.

D) Kinetically constrained model focuses on the role of
mobility defects and can thus be regarded as a purely
kinetic model (see, e.g., [255–258]). Chandler and Gar-
rahan and their coworkers proposed that in contrast to
equilibrium phase transitions, which occur in a config-
uration space, the glass transition occurs in a trajec-
tory space, and it is controlled by variables that drive
the system out of equilibrium. Thus, they connected
the glass transition to an exotic time-domain phase
transition between active and inactive states. This sce-
nario relies on the recognition that the glass transition
is the freezing of a liquid into a solid state “without
structural ordering”. This type of model, thus, shows
trivial thermodynamics but non-trivial dynamics and
is able to explain dynamic features such as super-
Arrhenius behaviour, dynamic heterogeneity, and the
violation of the Stokes-Einstein relation. However, this
model inevitably results in a complete decoupling be-
tween dynamics and thermodynamics, which may be
its weakness [259].

E) Approaches such as frustration model and spin-glass-
type model focus on geometrical frustration effects,
and apply the knowledge of a) a frustrated system [61,
260] to the problem of glass transition or b) spin
glass [261,246,262,263], whose glassy behaviour is
much more deeply understood than that of structural
glass. The random-first-order transition scenario [261–
263] belongs to this category. Here we note that the
energy landscape picture [264] has a close connection
to spin-glass-type approach. Unfortunately, however,
these approaches do not provide us with a molecular-
level explanation for the origin of frustration and the
nature of an underlying ordering transition. We note
that unlike approaches A)-D), approach E)-a) puts fo-
cus on the symmetry or structure rather than the den-
sity field. Interestingly, however, there is a deep con-
nection between MCT and some mean-field spin glass
models. So there is a link between MCT and approach
E). The link between approach B) and E)-b) was also
discussed [265].

These approaches A)-E) are essentially different in the
basic physical interpretation of the liquid-glass transition
with each other; for example, approaches A)-D) presup-
pose that glass transition is not associated with any or-
dering transition, while approach E) puts more empha-
sis on frustration effects on an underlying thermodynamic
ordering transition, which however is not related to crys-
tallization. However, the connection between MCT and
spin-glass models, which implies a link between dynami-
cal memory effects and geometrical frustration, makes the
situation a bit obscure. Furthermore, we may say that all
these models have some common features at least on an in-
tuitive level. For example, the free-volume theory and the
Adam-Gibbs theory look closely related with each other,
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although the languages used are quite different: We can
apparently connect them by saying that a minimum free
volume required for motion of a particle is shared by many
particles in the cooperatively rearranging region in a su-
percooled state. Such apparent similarities between differ-
ent approaches, which reflect the fact that each approach
captures some important feature of glass transition, make
it very difficult to answer which model is most relevant
to the phenomena. We may say that we do not yet have
a clear answer for what is the physical origin of slow dy-
namics associated with the liquid-glass transition.

Here it is worth noting that the free-volume theory
and Adam-Gibbs theory are consistent with the presence
of dynamic heterogeneity, while the original MCT, which
deals with a two-body density correlator in the mean-field
level, cannot explain it. The extension of MCT is, however,
now in progress [253,266–268]. However, in this scenario
the dynamic heterogeneity is diverging towards Tc, which
is located far above Tg and T0. How smearing of a sharp
transition by thermal fluctuations affects MCT critical-
ity is also not so clear. We point out that these models
do not seem to provide a clear answer for what physical
parameter controls the fragility and glass-forming ability
of liquids, although there are some efforts towards this
direction.

We believe that besides the drastic slowing down ac-
companied by glass transition, on which all the above the-
ories put a focus, we should also consider another impor-
tant problem, namely, why some molecules do crystallize
without vitrification and the others can easily form glasses
without crystallization. This is because “not to crystallize
on cooling” is the same as “to vitrify”. Since most glass-
forming molecules except for systems such as atactic poly-
mers can crystallize under a certain condition, it is impor-
tant for any physical model describing the glass transition
to explain why crystallization is easily avoided in the so-
called good glass formers. All approaches A)-E) presup-
pose the avoidance of crystallization. This is partly due to
a wide and basically correct belief that crystallization is
avoided kinetically in vitrification in the spirit of Classical
Nucleation Theory (CNT). Later, we will show that this
is not necessarily the whole story and a thermodynamic
factor associated with frustration on crystallization (more
strictly, crystal-like bond orientational ordering) may also
play a crucial role in the avoidance of crystallization.

As explained above, previous models of glass tran-
sition themselves cannot provide any direct information
on the glass-forming ability of liquids. Unlike these ap-
proaches, we propose that geometrical or energetic frus-
tration against crystallization plays a key role in the avoid-
ance of crystallization (or vitrification) in addition to the
kinetic factor, and controls the nature of the liquid-glass
transition and the glass-forming ability.

5.1.2 Our approach

Crystallization is suppressed by kinetic and thermody-
namic factors such as high viscosity, large crystal-liquid
interfacial energy, and small liquid-crystal free-energy dif-
ference. We propose that these factors are affected by ge-

ometrical or energetic frustration effects against crystal-
lization, which also control the nature of liquid-glass tran-
sition. Here we emphasize that we are not claiming that
crystallization is avoided by energetic frustrations alone.
In our model, crystallization can in principle occur in a
metastable branch of a glassy state. Our standpoints are
i) to choose a crystalline state as a reference state of a
glassy state and ii) to clarify the physical origin of frus-
tration against crystallization hidden in glass formers that
apparently have no intrinsic quenched disorder. Contrary
to the common belief that the density is the only order
parameter required for the physical description of liquids,
we proposed that it is necessary to consider bond orien-
tational order parameters, which represent medium-range
bond ordering towards a crystal as well as short-range
bond ordering towards the formation of locally favoured
structures (see sect. 6). This has already been empha-
sized throughout this article. We believe that this ap-
proach should be relevant at least to single-component
glass-forming liquids. We note that many molecular glass
formers are made of a single component. As will be dis-
cussed later, when a system suffers from strong disorder
effects, e.g., as in binary and multi-component systems,
we may need to consider other types of structural order
parameters.

Locally favoured structures act as random disorder ef-
fects and symmetry-breaking fields against the long-range
bond orientational and density ordering (crystallization)
in much the same way as in spin systems [17,31,242]. To
our knowledge, this was the first approach to the prob-
lem of the liquid-glass transition directly focusing on crys-
tallization (long-range density and bond orientational or-
dering). According to our model, a liquid below Tm is in
an unusual metastable state. Its free energy has extensive
numbers of local minima due to the frustration effects of
short-range bond ordering (or random disorder effects) in
addition to the deep minimum of a stable crystalline state.
Based on our recent numerical and experimental stud-
ies [24,33,269,270,10,37,271], we proposed [11,12] that
positional ordering is avoided by frustration rather eas-
ily, but bond orientational order linked to crystallization
(MRCO) still survives and grows continuously upon cool-
ing. This may be because upon crystallization transla-
tional ordering comes only after bond orientational or-
der is sufficiently developed (see sect. 6). Such crystalline
bond orientational ordering (MRCO) competes with bond
orientational ordering towards locally favoured structures
in a supercooled state. Under such competing orderings,
the correlation length of MRCO still diverges towards the
ideal glass transition temperature T0, which is the origin
of dynamic heterogeneity in this type of system (see be-
low for the details) and the growing activation energy (see
sect. 5.3.9).

5.1.3 Concept of geometrical frustration

Here we consider models of glass transition which put fo-
cus on geometrical frustration [62,63] in a liquid. Geomet-
rical frustration is canonically illustrated by considering
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the packing of equal-size spherical particles. This problem
is directly linked to the spatial arrangement of regular sim-
plices (triangles in 2D and tetrahedra in 3D), which are the
most well-packed densest possible local packing of spheres.
In 2D Euclidean space, triangles can assemble into the reg-
ular triangular lattice. Frustration can still be induced by
introducing a curvature in the 2D surface [62]. For 3D
Euclidean space, on the other hand, tetrahedra cannot
fill up the space without defects. Thus a regular tiling
of simplices inevitably leads to strong geometrical frus-
tration. This is the basis of many frustration-based mod-
els of glass transition [261,246,262,263]. However, such
purely geometric consideration may not be appropriate
when considering the structure of liquid, which is in a
thermodynamic state where entropy plays a crucial role.
For example, the concept of defects is not well-defined in
a liquid, and may be better to be interpreted as structural
fluctuations. As will be shown later, in addition to icosahe-
dral packings, fcc and hcp packings are locally favoured in
a thermodynamic system of hard spheres. Below we con-
sider approaches based on two different types of frustra-
tion, “internal geometrical frustration” and “frustration
against crystallization” and compare them.

5.1.4 Comparison between our model and other frustration
models

Here we compare our two-order-parameter model with
frustration or spin-glass models, focusing on the difference
in the underlying ordering phenomenon behind vitrifica-
tion between them. In particular, we focus on the following
facts:

a) Stereo-irregularity in polymer structures prevents
crystallization and leads to vitrification for atactic
polymers.

b) Mixing of different-size particles prevents crystalliza-
tion for simulations using hard and soft spheres and
Lennard-Jones particles [272].

c) There are a number of examples of glass-forming mix-
tures, both of whose component molecules themselves
are very poor glass formers.

d) Good glass formers can often be made by mixing many
component atoms in metallic glasses. Glass formation
is helped not only by random mixing effects, but also
by chemical and topological short-range ordering to-
wards icosahedral structures (see, e.g., refs. [35,84] and
the references therein). These glass formers are now
widely known as multi-component bulk metallic glass-
forming alloys [273,274].

e) It is also known that conformational disorder of
molecules helps vitrification. For example, ortho-
terphenyl (OTP) has significant bond-angle and out-
of-plane distortions of the phenyl-phenyl bonds. Such
structural irregularities may explain why OTP can be
undercooled far easier than m- or p-terphenyl. Further-
more, it was also demonstrated by Torre and cowork-
ers [275] that o- and m-toluidine have better glass-
forming ability than p-toluidine. They showed that this

difference arises from the fact that o- and m-toluidine
tend to form clusters, which prevent crystallization,
whereas p-toluidine does not. This is quite consistent
with our scenario.

f) It is pointed out by van Megen and his coworkers [276,
277] that the size distribution (polydispersity) of col-
loids is essential for the retardation of crystallization
and the resulting vitrification of colloidal suspensions.
All these examples strongly indicate that for vitrifi-

cation of liquids, or for preventing “crystallization”, frus-
tration or disorder effects are always required. More ex-
plicitly, disorder effects on crystallization are enough to
cause vitrification and thus slow glassy dynamics. This
fact, which is well known but not properly recognized,
supports our physical picture that frustration or disorder
effects on crystallization is crucial for vitrification of any
liquids, including simple one-component liquids, which ap-
parently look free from such disorder effects. In all the
above cases, to make a liquid a “good glass former” is the
same as to introduce frustration or disorder effects against
crystallization. These examples clearly indicate that crys-
tallization is avoided not only by a kinetic reason, but
also by energetic and/or entropic frustration. Our model
is based on a picture that “to vitrify” is essentially the
same as “not to crystallize”.

We believe that our picture that a liquid always tends
to crystallize into the equilibrium crystal even under frus-
tration effects is more natural than the conventional frus-
tration or spin-glass-type picture that a liquid tends to be
ordered into a special hypothetical ordered state or a spe-
cial glass structure, which are different from the equilib-
rium crystal. In the latter picture, for example, we need to
assume an unconventional type of ordering, whose nature
is generally not clear, in a liquid branch, in addition to the
ordering into a crystal. The possible candidates of such
an ordered state are a hypothetical ordered state of lo-
cally favoured structures (e.g., quasicrystal for icosahedral
structures [62,63] and an exotic amorphous order [263]).
In this scenario, a locally favoured structure is not nec-
essarily localized and tends to extend further towards its
long-range ordering, and it is this ordering that is the driv-
ing force of vitrification. However, it is not clear whether
real liquids tend to be ordered into such a hypothetical or-
dered state (e.g., stacking tetrahedra) in a liquid branch
or not. More importantly, disorder effects in the above
examples a)-f) are introduced purely to avoid crystalliza-
tion, and neither to help the hypothetical ordering nor to
increase disorder effects on it. These considerations seem
to suggest that our model is physically more natural than
frustration or spin-glass models, although further careful
studies are necessary to draw such a conclusion. We note
that this view was supported by recent simulation stud-
ies [24,269,10,37,278], as will be shown later.

5.1.5 Dynamic heterogeneity: Lengthscale relevant for slow
dynamics

Recently there have been growing evidence that slow dy-
namics in a supercooled liquid is spatially heterogeneous
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and the lengthscale of this heterogeneity grows when ap-
proaching Tg. This raises a fundamental question on the
origin of slow glassy dynamics. Many approaches such as
MCT ascribe slow dynamics to the local blocking of par-
ticle motion in a densely packed situation. On the other
hand, strong spatial correlation of particles over a meso-
scopic lengthscale may be the origin of slow dynamics. The
physical picture behind this has a link to dynamic critical
phenomena, although there is an essential difference be-
tween them, as will be discussed later. This question on
the relevant lengthscale, microscopic or mesoscopic, lies at
the heart of the origin of slow dynamics associated with
glass transition and will be the central topic below.

5.2 Roles of locally favoured structures in vitrification

5.2.1 Frustration effects

In the above, we demonstrate the importance of locally
favoured structures in the problem of liquid-state ther-
modynamic anomaly and liquid-liquid transition. For ex-
ample, spherical particles interacting with the Lennard-
Jones potential are known to form icosahedral structures,
whose energy is even lower than the corresponding fcc,
hcp or bcc crystals locally [2]. This is also the case for
hard spheres [13–15]. Unlike water, the symmetry of a
locally favoured structure is not consistent with any crys-
tallographic symmetry for these cases [35]. This energetic
frustration hidden in the interaction potential causes the
frustration effects on long-range bond orientational and
density ordering (crystallization). The situation is very
similar to that in fig. 3.

Here we consider how such local bond ordering affects
glass-forming ability. Conventional models of glass tran-
sition cannot answer the question of what controls the
glass-forming ability, since they do not put focus on crys-
tallization itself. The explanation is then given by the clas-
sical nucleation theory (CNT) alone without considering
frustration effects. Of course, the CNT is always the ba-
sis when considering the glass-forming ability. However,
this may not necessarily be the whole story. Significant
modifications may be required (see sect. 6). In our model
of liquid-glass transition, the glass formability is related
to the strength of frustration between long-range crystal
ordering and short-range bond ordering [34,35,84] in ad-
dition to the physical factors considered in the classical
nucleation theory.

By modifying the classical nucleation theory [279]
while including the effect of translational-rotational de-
coupling [280], the nucleation frequency I is given by

I = knDT exp
[
− ΔF c/kBT

]
, (42)

where kn is a constant and DT is the translational diffu-
sion constant. ΔF c is the free-energy barrier for nucleation
of a critical nucleus, which is estimated as

ΔF c = 16πγ3
l−c/(3δμ)2,

where δμ is the Gibbs free energy of a supercooled liquid
over the crystal per unit volume and γl-c is the interface

tension between liquid and crystal. Usually, it is assumed
that

δμ = ΔHf (1 − T/Tm),

where ΔHf is the enthalpy of fusion. This assumption
should be valid as far as the degree of supercooling is not
so large. According to our model, however, it should be
modified due to the existence of locally favoured structures
as follows:

δμ ∼= ΔHf (1 − T/Tm) + ΔG(Tm)S̄(Tm) − ΔG(T )S̄(T ).

This reflects the lowering of the liquid free energy due
to local structural ordering. The downward deviation of
δμ from the linear temperature dependence is indeed ob-
served for various metallic glass formers [281,282]. Fur-
thermore, this deviation is larger for a stronger (better)
glass former [281,282]. According to our model, a stronger
glass former may have larger S̄, provided that the local
symmetry of S is not consistent with that of the crystal.
Thus, the above observation is quite consistent with our
model. We also note that γl-c should be larger for a liquid
with larger S̄. These factors should increase the nucleation
barrier for a system suffering from strong frustration (i.e.,
a system of large S̄).

As will be discussed in sect. 6, crystallization is initi-
ated by the enhancement of the coherency of crystal-like
bond orientational order. Thus, frustration effects on crys-
talline bond orientational ordering leads to the increase of
the barrier height for nucleation. From these considera-
tions, we conclude that the better glass formability is at
least partially due to smaller δμ and larger γl-c, which are
induced by a stronger tendency of short-range bond or-
dering (larger S̄) or random disorder effects for a stronger
liquid with larger D. Here D is the so-called fragility index.
Note that the smaller D means the larger fragility of the
liquid, i.e., the steeper increase of the viscosity near Tg.
Thus, our model suggests that a better glass former likely
suffers from stronger frustration effects, provided that the
values of ΔHf and the bare interfacial tension are about
the same between different liquids. For a single-component
liquid, thus, we expect that a stronger tendency of short-
range bond ordering not only makes the liquid stronger
(i.e., larger D), but also enhances the glass-forming abil-
ity. Glass-forming ability is often characterized by the crit-
ical cooling rate Rc, which is the slowest cooling rate to
form a glassy state from a supercooled liquid without crys-
tallization. We note that the positive correlation between
Rc and D in metallic glass formers may naturally be ex-
plained by our model [35,84]. In the future, we need to
improve a theory of crystal nucleation on the basis of the
microscopic physical picture described in sect. 6.

5.2.2 Apparent disparity between T0 and TK

We also showed that this short-range bond ordering af-
fects the conventional picture even on a qualitative level.
For example, the excess entropy of liquid over the crystal
should be modified, reflecting the extra entropy decrease
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Fig. 28. Temperature dependence of the heat capacity CP

(top) and the entropy σ (bottom). Short-range ordering results
in the deviation of TK from T0 toward the high-temperature
side and the extra contribution to the heat capacity jump at
Tg, δCP . The latter may explain unusually large δCP (Tg) for
alcohols and metallic glass formers [283]. This figure is repro-
duced from fig. 2 of ref. [34].

due to short-range bond ordering. This leads to the ap-
parent violation of the well-known relation T0 = TK (T0:
the Vogel-Fulcher-Tammann temperature; TK: the Kauz-
mann temperature). The configurational entropy is sup-
posed to vanish at the Vogel-Fulcher-Tammann tempera-
ture T0, namely, TK = T0. This decrease in the configu-
rational entropy upon cooling is linked to the growth of
dynamical correlation length, or underlying static corre-
lation length ξ, as will be shown below. Upon cooling,
however, a system also loses entropy associated with the
formation of locally favoured structures. This leads to an
extra decrease of the entropy by ΔσSROS̄ (see eq. (20)).
The situation is schematically shown in fig. 28. The de-
viation of TK from T0 should be larger for a stronger liq-
uid having a stronger tendency of local bond ordering,
which has recently been confirmed for a wide variety of
liquids [34]. However, we emphasize that this may be only
an apparent deviation originating from the large extrap-
olation of the entropy change (see fig. 28). We also note
that as shown later, the Vogel-Fulcher-Tammann temper-
ature T0 and the Kauzmann temperature TK can never
be accessed since crystallization should take place before
(quasi-)equilibrating a supercooled liquid state [280]. This
also provides a natural resolution of the Kauzmann para-
dox (see sect. 5.10).

5.2.3 Quasicrystal formation

Here we consider an interesting problem of the relationship
among local icosahedral ordering, glass formability, and

quasicrystal formation in bulk metallic glass formers [35,
84]. For example, Chen et al. [284] recently reported the
structural similarity between a supercooled liquid and an
icosahedral phase in Zr65Al7.5Ni10Cu12.5Ag5. They found
that i) the effective activation energy of transition from a
supercooled liquid to an icosahedral quasicrystalline phase
is much lower than that from a supercooled liquid to eu-
tectic crystalline phases and ii) the activation energy of
transition from an icosahedral to a crystalline phase is al-
most the same as that from a supercooled liquid to a crys-
talline phase. These facts strongly suggest the similarity
of the local atomic structure between the supercooled and
the icosahedral phase. Our model provides us with a natu-
ral scenario for the close relationship among the degree of
local icosahedral ordering in liquid, glass formability, and
quasicrystal formability [35,84] (see also 5.11.10).

5.3 Our scenario of glass transition: Critical-like glassy
structural ordering and slow dynamics

We recently found critical-like behaviour of glassy struc-
tural ordering in several glass-forming liquids, which in-
dicates that liquid is almost homogeneous if we look it
through density order parameter, more specifically, two-
body density correlation, but it is quite heterogeneous
if we look it through a relevant glassy structural order
parameter such as a bond orientational order parameter.
This means that contrary to the common belief, glass tran-
sition actually involves a significant structural change, al-
though this cannot be seen by the two-point density cor-
relator. The critical-like fluctuations apparently diverges
towards the hypothetical critical point, which seems to
be located at the ideal glass transition point T0. We in-
terpret this phenomenon as critical-like phenomena asso-
ciated with glassy structural ordering under frustration.
The critical behaviour observed at least apparently be-
longs to the Ising universality class, despite that in some
cases (e.g., polydisperse hard-sphere systems) the order
parameter is a bond orientational order parameter, which
is tensorial and not scalar [10]. Our finding suggests an
intimate link between such critical-like fluctuations, dy-
namic heterogeneity, and glassy slow dynamics. Below
we describe more details about this and discuss related
problems.

5.3.1 Glassy structural order under frustration: Competing
bond orientational ordering and/or random disorder effects

In our scenario, bond orientational ordering which comes
from a part of the crystallization Hamiltonian (see
eq. (13)) tends to grow in a metastable supercooled liquid
state. This may be regarded as a shadow of crystallization.
As will be shown in sect. 6, translational order develops, or
crystallization takes place, only when bond orientational
order and its coherency grow beyond a certain critical
threshold. The growth of the phase coherency of bond ori-
entational order is rather easily suppressed or destroyed
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by frustration effects, although the degree of bond orien-
tational order itself can grow even under frustration. The
sources of such frustration can be i) competing bond ori-
entational orderings which have symmetries inconsistent
with each other and/or ii) random disorder effects such as
polydispersity of colloidal particles, stereo-irregularity of
polymers, and mixing of more than two components. As
we discussed above, for case i) glassy structural order can
be represented by bond orientational order. This is also
the case for case ii) if disorder effects are not so strong.
For 2D polydisperse colloids it is hexatic order parameter
Ψ6, whereas for 3D polydisperse colloids it is a combina-
tion of six-fold and four-fold bond order parameters, Q6

and Q4 (more precisely, crystal-like (fcc-like) bond orien-
tational order parameter) [13,38].

For 2D polydisperse system, we used the hexatic or-
der parameter averaged over a certain period of time to
remove vibrational distortion (≤ τα). For 3D polydis-
perse systems, on the other hand, we employ the following
coarse-grained bond order parameter [10], which is ob-
tained by combining the time average and the spatial av-
erage which was developed by Lechner and Dellago [67].
The time-averaged l-th order bond orientational order of
particle k is calculated as

Q̄k
l =

1
τα

∫ t0+τα

t0

dt

(
4π

2l + 1

l∑

m=−l

|Qk
lm|2

)1/2

.

Here

Qk
lm = 1/Nk

b

Nk
b∑

j=0

qlm(rkj),

where the sum from j = 0 to Nk
b runs over all neighbours

of particle j plus particle k itself [67] (see also sect. 2.2).
We note that a coarse-graining of the order parameter
in space and/or time is crucial to extract static struc-
tural order in a supercooled liquid: This coarse-graining
and/or temporal averaging added to the standard Stein-
hardt bond orientational parameter [61] is useful in de-
tecting local structural ordering explicitly. However, the
time averaging may mix up static and dynamic informa-
tion and thus we need a special care. The meaning of the
coarse-graining operation is rather clear. There are two
types of bond orientational order: extendable (fcc and hcp)
and non-extendable (icosahedral) order. If we calculate the
spatial correlation without distinguishing these two types
of order, the correlation tends to decay rather quickly due
to the absence of the spatial correlation between them.
The coarse-graining procedure allows us to pick up only
the growing extendable order. However, this problem may
also be related to the fragility of the definition of the bond
orientational order parameter to microscopic motion of
particles. Thus, further careful studies are necessary to
settle this issue.

Strong frustration effects on crystallization as in bi-
nary hard-sphere mixtures lead to decoupling between
“glassy structure” and crystalline bond orientational or-
der and thus make an identification of glassy structural

order quite difficult. This is a natural consequence of the
fact that in this type of systems phase separation is re-
quired for crystallization to take place. This leads to a
decoupling between glassy structural order and bond ori-
entational order linked to the crystal symmetry. Thus,
we take a different approach to elucidate structural fea-
tures of a supercooled state of 2D binary colloid mixture
(2DBC). For a system interacting with hard-sphere-like
repulsive interactions, the free energy is dominated by en-
tropy. For example, the ordering in a monodisperse hard-
sphere system takes place to increase the total entropy by
gaining the correlational (vibrational) entropy while sac-
rificing the configurational (or structural) entropy. This
essential physics should also be the same for glass transi-
tion: the system tends to lower the free energy by gaining
the correlational entropy. This motivates us to make the
estimation of so-called “pair structural entropy”, or the
two-body translational correlation contribution to the ex-
cess entropy, s2 [285–287]:

s2 = −ρ

2

∫
dr

[
g(r) ln g(r) − (g(r) − 1)

]
.

It was shown that this entropy has a direct link to the
transport in various liquids [288–291,119]. For 2DBC, the
partial excess entropy for particle type α (α = A or B) is
given by [292]

sα
2 = −1

2

∑

ν

ρν

∫
dr

[
gνα(r) ln gνα(r) − (gνα(r) − 1)

]
,

where ρν is the individual component of the total number
density ρ. The local version of s2 for particle j, sj

2 (or,
s2(r)) can measure local structuring around particle j lo-
cated at r, even if there is no obvious structural order.
To do so, we calculate (time-averaged) g(r) for particle j

and then sj
2. It is worth noting that this local s2 might

be used as a structural indicator of glassy structural or-
der for a variety of systems covering from polydisperse to
bidisperse systems. However, since this does not involve
many body correlations in a direct manner, its validity is
not so clear at this moment (see below).

In a system where bond orientational order plays an
important role, the coupling between bond order param-
eter and density is given by eq. (12). Since there is no
direct coupling to density, bond orientational order does
not necessarily accompany a local density change, but may
accompany an increase in the density correlation. If there
is a similar coupling between glassy structural order and
density in general, s2 may be a useful measure of glassy
structural order.

In relation to this, we note that both bond orienta-
tional order and structural entropy s2 reflect the degree of
short-range structural ordering. The latter can be applied
even to cases where there is no specific local symmetry
around a particle. The analysis of structural entropy s2

is motivated by the successful description of the transport
anomaly of liquids including water in terms of s2 [288–291,
119,120], which suggests that a link between local tetra-
hedral ordering and structural entropy s2. Both are linked
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to low configurational entropy, more generally, low local
free energy, which leads to low fluidity, or high solidity.
However, s2 is basically linked to the two-body correla-
tion function, but not “directly” to many-body correla-
tions, although a hidden connection between s2 and bond
orientational order may be expected as mentioned above.
The long time average to obtain the local version of s2

may have mixed up the static and dynamical heterogene-
ity [293]. Thus, it still remains elusive whether structural
entropy at a pair level can be used to pick up static struc-
tural order or not. This point is now under investigation.

In the above, we consider two types of glassy order pa-
rameters: One is the bond orientational order parameter,
and the other is the structural entropy. The former is a
tensorial order parameter, whereas the latter is a scalar
order parameter. As described later, the tensorial nature
of the glassy order parameter may be essential for crystal-
lization. We note that these structures with low configu-
rational entropy can support stress transiently.

In relation to this, here we mention recent works by
Öttinger and his coworkers [294–296]. They estimated the
static correlation length ξ in a binary Lennard-Jones liq-
uid by using coarse-grained non-affine displacement field
to small shear deformation [294,240,241]. The typical lin-
ear size of the regions where non-affine deformation takes
place is roughly the particle size at a high temperature,
but grows upon approaching Tg. It was shown that the cor-
relation length diverges towards T0 with the same power
law as ours (see below). The regions whose inherent struc-
tures show more non-affine deformation should have more
disorder. This non-affine nature upon deformation per-
sists in a glass state and plays a significant role in the
non-affine and nonlinear response of glasses to large de-
formation and the mechanical fracture [240,241]. This im-
plies that regions of high glassy structural order is linked
to regions whose inherent structures exhibit more affine
deformation. This is consistent with our scenario that re-
gions of high glassy structural order has a long structural
lifetime, i.e., has (transient) stress-bearing solid-like char-
acter. In relation to this, a causal link between the local-
ized low-frequency normal modes of a configuration in a
supercooled liquid and the irreversible structural reorga-
nization of the particles within this configuration was also
pointed out recently [297]. Such a correlation was also ob-
served experimentally in a colloidal glass [298].

5.3.2 Critical-like behaviour of glassy structural order

We recently found in several model systems that glassy
structural order (e.g., bond orientational ordering) ex-
hibits Ising-like critical anomaly towards the ideal glass
transition point T0 in a supercooled state [10]. The corre-
lation length of bond orientational order ξ grows as

ξ = ξ0t
−ν , (43)

where t = (T − T0)/T0 or t = (φ0 − φ)/φ (see sect. 7.4 of
ref. [12]), and its susceptibility diverges as

χ = χ0t
−γ . (44)
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Fig. 29. (Colour on-line) The growth of medium-range crys-
talline order and its relation to the slow dynamics. (a) Rela-
tion between ξ/ξ0 and tν for all the systems: 2DPC (Δ2DPC =
9%) [269], 2D granular liquid (2DGL) (Δ2DGL = 10.7%) [270],
3DPC (Δ3DPC = 6%), 3D polydisperse Lennard-Jones liquid
(3DLJ) (Δ3DLJ = 6% and the density ρ = 1.2), 2D spin liquid
(2DSL) (Δ2DSL = 0.6) [24], and 2D binary soft sphere liq-
uid (2DBL). Note that t = (T − T0)/T0. The fitted line has
a slope of −1, indicating the relation ξ/ξ0 = t−2/d. (b) Re-
lation between log10(τα/τ0) and DT0/(T − T0) = D(ξ/ξ0)

d/2

for all the systems. Symbols are the same as in a. The solid
line is the relation of log10(τα/τ0) = (log10 e)[DT0/(T −T0)] =
(log10 e)[D(ξ/ξ0)

d/2]. D = 0.24, 0.41, 7.3, 0.16, 0.78, 3.85 for
2DPC, 2DGL, 2DSL, 2DBL, 3DPC, and 3DLJ, respectively.
The fact that the fragility index D is not a universal con-
stant suggests that the relation between a diverging length-
scale (static criticality) and slow dynamics (or, viscosity) may
not be universal and depends upon the degree of frustration.
This figure is reproduced from fig. 4 of ref. [10].

We found that ν ∼ 2/d (see fig. 29(a)) and γ ∼ 2ν,
which are consistent with the d-dimensional Ising univer-
sality class [10]. The criticality was checked [10] by us-
ing the finite-size scaling analysis [299,300]. The similar-
ity between dynamic heterogeneity and critical fluctua-
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tions has also been pointed out by many other researchers
(see, e.g., [301–305,296]). We speculate that this Ising-
like criticality is a consequence of frustration caused by
either competing bond orientational orderings or random
disorder effects on structural ordering. We note that the
bond orientational order parameter with continuous sym-
metry should exhibit a (fluctuation-induced) first-order
phase transition because it has a continuous symmetry.
Nevertheless, we observe Ising-like criticality character-
istic of a discrete (Z2) symmetry [10] (see below on its
possible origin).

Although we see that the power law divergence of ξ at
least practically describes the observed change of ξ in the
accessible t region, it is not clear at this moment whether ξ
really diverges at T0 or not. The limited range of ξ (at most
a decade) makes it difficult to derive a definite conclusion.
This originates from the present ability of numerical sim-
ulations, but more essentially from the intrinsic inaccessi-
bility to the hidden hypothetical critical point because of
the extremely steep slowing down of the structural relax-
ation time τα towards it.

The minimum reduced temperature, t = (T − T0)/T0,
we can access is still larger than 10−2, which is markedly
different from the case of ordinary critical phenomena,
where we can easily realize t ∼ 10−5. In relation to this,
there is a possibility that there is no singularity above
T = 0K (see below). In our scenario, this problem may be
viewed as whether the ordering transition is second-order,
rounded, or weakly first-order. As shown below, crystal-
lization must take place before reaching T0: Resolution of
the Kauzmann paradox [280]. Thus, the ideal glass transi-
tion point, T0, is intrinsically an inaccessible critical point.
We also note that recently even a non-monotonic temper-
ature dependence of ξ was reported [306]. In this work,
however, the way to extract the correlation length is dif-
ferent from ours (see sect. 5.8), which might have an influ-
ence on the non-monotonic behaviour of ξ. Further careful
studies are necessary for revealing the origin of the criti-
cality or even its presence.

5.3.3 Crossover between critical (low temperature) and
non-critical (high temperature) behaviour

Here we consider a possible crossover between critical
(low temperature) and non-critical (high temperature) be-
haviour. Our scenario of a hidden critical point at the ideal
glass transition point φ0 suggests that the glass transi-
tion volume fraction φg is located far below φ0. This im-
plies that we are almost always quite far from the critical
point and the accessible reduced temperature t is rather
large, as described above. Recently, we found for gas-liquid
critical phenomena of a colloid-polymer mixture that the
crossover of the correlation length from a critical to a non-
critical, classical regime can be expressed by replacing the
ordinary t = (T − Tc)/Tc by t = (T − Tc)/T (Tc: the
critical point) [307]. This expression avoids an unphysical
behaviour that ξ goes to zero for T → ∞, and guarantees
ξ → ξ0, where ξ0 is the bare correlation length reflect-
ing a characteristic length of microscopic interactions, for

T → ∞. This expression was also theoretically proposed
for magnetic systems [308]. So we should be able to de-
scribe the crossover from a critical to a non-critical regime
by replacing t = (φ0 − φ)/φ by t = (φ0 − φ)/φ0 in a
natural manner. In hard-sphere colloids, it is known that
for φ ≤ 0.45 the relaxation time is almost independent
of φ [277], which implies that there is no cooperativity
for that φ range. For ordinary molecular liquids, this rela-
tion may describe a crossover from a high-temperature Ar-
rhenius to a low-temperature super-Arrhenius behaviour.
This point needs further studies. This crossover marks
the onset of the criticality, which induces all sorts of
characteristic glassy behaviours such as dynamic hetero-
geneity, translational-rotational decoupling, the violation
of Stokes-Einstein relation, and the emergence of Johari-
Goldstein slow β process [309,310].

5.3.4 Link between the correlation length and the structural
relaxation

What physical mechanism connects the growing length-
scale with slow dynamics also remains an important open
question, which lies at the heart of the origin of the glass
transition (see also sect. 5.3.9). Here we consider this prob-
lem, namely, the relation between the correlation length
of glassy structural order ξ and the structural relaxation
time τα. We find the following empirical relation between
τα and ξ (see fig. 29(b)):

τα = τ0
α exp(D(ξ/ξ0)d/2), (45)

where τ0
α is the microscopic time, D is the fragility in-

dex, and d is the spatial dimensionality. Here it should
be mentioned that similar relations for ξ and τα were re-
cently reported on the basis of numerical simulations, but
with slightly different functional forms or exponents [300,
311,296,306,312]. Thus, we need further careful studies to
settle this issue. We note that the above relation reduces
to the following Vogel-Fulcher-Tammann (VFT) relation
by inserting ξ = ξ0t

−2/d:

τα = τ0
α exp(DT0/(T − T0)). (46)

Whether the relation (45) implies the direct importance
of the growing lengthscale in slow dynamics or merely the
indirect relation via, e.g., the number density of defects
remains a subject for future study. However, we argue that
the former may be the case: The relation (45) implies that
the structural relaxation involves the activation process
whose energy scales as ξd/2, which can be understood as a
consequence of cooperativity, or the coherency of particle
motion over ξ.

A different type of relation, the power law,

τα ∝ ξz, (47)

was also proposed, relying on the analogy to critical phe-
nomena [303,304]. This power law form has widely been
used in the analysis of simulation results, but not so pop-
ularly used in in the analysis of experimental results. We
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Fig. 30. (Colour on-line) Log-log plot of τα against ξ for
3DPC. Solid lines are the fitting of eq. (45).
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Fig. 31. (Colour on-line) The temperature dependence of the
structural relaxation time τα for toluene. The data were taken
from ref. [314]. The dashed red line is an extrapolation of the
high temperature Arrhenius behaviour.

also note that the following form which takes into the ac-
tivated dynamics into account was also proposed for a low
temperature region where cooperativity plays a role [313]:

τα ∝ (ξ/ξ0)z exp(Δa/kBT ), (48)

where Δa is the microscopic activation energy. For 3D
polydisperse spheres, however, the relation (45) better
fits the data than the relation (47) (see fig. 30). See also
ref. [311] on the relation between τα and ξ. A possibility
of a zero temperature dynamical critical point (T0 = 0K)
was also pointed out [305].

Here we point out a difficulty in the power law type
relation (47). The power exponent z was reported to be
in the range between 2 and 4 on the basis of results of nu-
merical simulations. In the range that can be covered by
simulations, the difference between the power law and the
exponential law is not so significant. In experiments, on
the other hand, the situation is very different. As such an
example, we show in fig. 31 the temperature dependence
of τα for toluene, which is a typical fragile liquid. As can
be seen there, τα starts to deviate from the high temper-
ature Arrhenius behaviour around the melting point Tm

and then increases by 12 orders of magnitude during a

temperature interval of several tens K upon cooling. This
means that even for z = 4, ξ has to increase by a fac-
tor of 1000. However, such a long-range correlation (1000
times of a molecular size) has never been reported. This
seems to be a weakness of the power law scenario. How-
ever, since the range covered by numerical simulations,
which can provide information on ξ, is rather narrow and
there might also be a crossover from microscopic to meso-
scopic dynamics, further careful studies are necessary to
reveal the definite relation between τα and ξ.

5.3.5 Speculation on the nature of the hypothetical
underlying transition at T0

Here we discuss the nature of the underlying ordering,
taking 2DPC as an example. For 2DPC, we take an order
parameter as ψ6, which is a non-conserved complex hex-
atic order parameter. The question here is why the com-
plex order parameter of a continuous symmetry exhibits
discontinuous Ising (Z2) critical behaviour. This may be
a consequence of the fact that the spatial coherence of
the phase component θ of the bond orientational order
parameter ψ6 = |ψ6|eiθ is easily disrupted by disorder
effects. The loss of long-range phase coherence due to dis-
order effects, more specifically, polydispersity, (see below)
may prohibit gapless long-wavelength excitations in the
ordered phase and transform the symmetry of the ordered
phase from continuous to discrete Ising (Z2) symmetry.

Physically, the order parameter is correlated with
the degree of triangular tiling and anti-correlated with
the number density of geometrical defects (squares, pen-
tagons, . . . ). This feature can be clearly seen in fig. 32(d):
The population of squares P (4) (defects) monotonically
decreases with φ and its extrapolation goes to zero around
φ0, suggesting the transformation of squares to triangles
with an increase in φ. The hypothetical ordered state sup-
posed to be attained at φ0 may be a state of global trian-
gular tiling, but with “distortion” due to polydispersity-
induced geometrical disorder. This state has no (or little)
configurational entropy. Even in this hypothetical ideal
non-ergodic state, correlational entropy, or local vibra-
tional degrees of freedom, remains; that is, particles dress
correlation volumes around them. This feature may make
thermal glass transition distinct from athermal jamming
transition. Geometrical defects tend to disappear com-
pletely at φ0 (see fig. 32(d)), which results in the disap-
pearance of the configurational entropy and the resulting
freezing of a particle configuration, or the loss of fluid-
ity. The importance of defects was also emphasized by
Aharonov et al. [315] in their study of a 2D binary soft-
sphere mixture. They considered that some defects must
be excited at a finite temperature and thus any phase tran-
sition does not exist (the absence of T0). This may further
imply that there is a finite probability to excite defects
even below T0, ultimately indicating the absence of the
ideal glass with static elasticity. As will be shown later
(see sect. 5.10), the system may eventually crystallize at
the lower metastable limit TLML before reaching T0 [280]
and thus it may not practically be meaningful to consider
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Fig. 32. (Colour on-line) Geometrical tiling patterns of 2DPC
(Δ2DPC = 9% and φ = 0.73) and its φ dependence. (a) Correla-
tion of the (instantaneous, or not time averaged) order param-
eter, ψ6, to tiling units (triangles, squares, pentagons, . . . ), or
geometrical defects for 2DPC. Bonds are shown as thin white
lines. ψ6 is evidently anti-correlated with the number density
of geometrical defects (voids). (b) Correlation of a local volume
(area) per particle, A, calculated from the area of a Voronoi
polygon to a tiling unit (triangles, squares, pentagons, . . . ), or
geometrical defects, for 2DPC. Geometrical defects, or voids
(red particles), accompany densely packed triangles (blue par-
ticles) nearby, and thus density fluctuations are suppressed
over a long range. Note that particles with large ψ have green
colour, indicating they have intermediate A. See the colour bars
for the meaning of the particle colour. c, Distribution of poly-
gons with N sides. Polygons are predominantly composed of
triangles (N = 3) and squares (N = 4). d, φ-dependence of the
fraction of triangles and squares, which are averaged over 10τα.
Squares (geometrical defects) decrease, or transform to trian-
gles, with an increase in φ and tend to completely disappear
around φ0. This figure is reproduced from fig. 2 of ref. [10].

the exact nature of this hypothetical ideal glass transition
point, despite its conceptual importance.

This link between the degree of bond orientational or-
der and the degree of triangular tiling suggests the link be-
tween “glassy structural order” and “solidity”. This latter
link may be a generic feature of glassy structural order,
which is formed to lower the free energy of the system lo-
cally. This further suggests that the lowering of the free
energy must be associated with the increase in solidity, or
slow dynamics.

The degree of distortion increases with an increase in
the degree of polydispersity, Δ. This means that a denser

packing is required to attain a state of global triangular
tiling, which explains the increase of φ0 and D, i.e., the de-
crease of the fragility, with an increase in Δ. We find that
the correlation lengths estimated from the spatial corre-
lations of the complex and scalar (rotationally invariant)
bond orientational order parameters both diverge towards
φ0, following the same power law ξ/ξ0 = (φ0/φ − 1)−1.
This scalar nature of the order parameter “correlation”
also suggests that the system is to belong to the Ising uni-
versality class, whose lower critical dimension dL is 1 [124,
71], consistent with our observation. However, we stress
that the structural order parameter itself is not scalar,
but complex (or tensorial).

Such transformation of the phase ordering from (Hei-
senberg-type) continuous to Ising (Z2) symmetry due to
frustration and random disorder effects has also been
known for spin systems [316,317], implying the generality
of frustration and random disorder effects on the nature
of the ordering. Very recently, the liquid-to-hexatic transi-
tion in 2D was revealed to be weakly first-order [90]. The
introduction of the polydispersity might also alter the na-
ture of the transition.

These facts lead us to the following conjecture: The
introduction of any frustration or random disorder effects
disturb the phase coherence of the direction of the vector
or tensorial order parameter. This may eventually trans-
form the nature of the transition from the continuous to
the discrete Ising symmetry. So we speculate that the
Ising-like criticality associated with bond orientational or-
dering may be a manifestation of the underlying frustra-
tion against the bond orientational ordering. Finally, we
emphasize that the most important characteristics of this
transition is that the order parameter is not only linked
to local structural symmetry, but also to high solidity, or
low fluidity. This may be the most crucial feature of glass
transition.

5.3.6 Critical-like slow dynamics of bond orientational order
parameter in 2DPC

Here we consider critical-like slowing down of hexatic or-
der parameter ψ observed in 2DPC. The kinetic equation
describing the dynamics of the non-conserved complex or-
der parameter ψ should be expressed as

∂ψ

∂t
= −LR

δF (ψ)
δψ∗ , (49)

where LR is the renormalized transport coefficient. Al-
though LR may depend on ψ, here we neglect such a
dependence for simplicity. Here F (ψ) is the Landau-type
free-energy functional of the order parameter ψ:

F (ψ) =
∫

dr

[
τ

2
|ψ|2 +

u

4
|ψ|4 +

K

2
|∇ψ|2 + . . .

]
, (50)

where τ = a(T − T0) and a, u and K are positive con-
stants at the mean-field level. However, τ , u, and K can
be replaced by the renormalized ones for a more accu-
rate description including fluctuation effects [124]. Here
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Fig. 33. (Colour on-line) k-dependence of Sk(t) ( = 〈ψ6(k, t)
ψ6(−k, 0)〉) for φ = 0.740 and Δ = 9%. The curves are the
fitted functions.

T0 is the hypothetical ordering point of ψ under an in-
fluence of frustration. Equation (50) may be regarded
as a part of the free energy describing crystallization,
in which density (positional) ordering is prevented by
frustration. This kinetic model belongs to “model A” in
the Hohenberg-Halperin classification of dynamical crit-
ical phenomena [124,71]. Here we neglect possible cou-
plings of ψ to the velocity and stress fields for simplicity.
Then, the order parameter correlation function S(k, t) is
predicted to decay as a function of time t as

S(k, t) ≡ 〈ψk(t)ψ−k(0)〉 = χk exp(−Γkt), (51)

where χk(≡ S(k, 0) = 〈ψkψ−k〉) is the k-dependent sus-
ceptibility and Γk is the decay rate of the order parameter.
Here Γk is given by

Γk = LR/χk
∼= (LR/χ0)tγ [1 + (kξ)2−η]. (52)

Here we show the order parameter correlation func-
tion Sk(t) for different values of kξ in fig. 33. For ka ≤ 1
(note that the average particle radius a = 1), Sk(t)
can be well fitted by the single exponential function,
which is typical of critical fluctuation dynamics, whereas
for ka > 1 (note that a = 1) the function becomes
stretched, reflecting the influence of microscopic struc-
tural relaxation. This crossover from the low k to high
k behaviour of the order parameter correlation function
around ka ∼ 1 is reasonable and can be regarded as the
crossover from the critical-fluctuation-dominated to the
microscopic-relaxation-dominated regime.

Next we compare the simulation results of 2DPC with
the theoretical prediction of the above phenomenological
model for 2DPC (d = 2). Because of the Ising (Z2) symme-
try of the underlying ordering, we expect that this system
belongs to the 2D Ising universality [71], where the val-
ues of the critical exponents are: γ = 7/4 (susceptibility),
α = 0 (heat capacity), β = 1/8 (spontaneous magnetiza-
tion), and ν = 1 (correlation length), and ηF = 1/4 (Fisher
correction) [124,71]. This means that Γk ∝ [1 + (kξ)7/4]
and Γk=1/ξ ≡ 1/τξ = (2LR/χ0)t7/4 for 2D (see eq. (52)).
Figure 34(a) plots the k-dependence of Γk obtained by the
fitting of eq. (51) to S(k, t) (see fig. 33), which is consistent
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Fig. 34. (Colour on-line) Critical-like behaviour of dynam-
ics correlation in 2DPC (Δ2DPC = 9%). (a) The k depen-

dence of the decay rate Γk for 2DPC. The fitted curve is Γk ∝
[1+(kξ)7/4]. Here ξ was determined independently by the clus-
ter size (see text). (b) The φ dependence of τξ/τα for 2DPC.

The fitted curve is τξ/τα ∝ t−7/4 ∝ (φ0 − φ)−7/4. φ0 was de-
termined by the independent fitting for τα as 0.78. This figure
was reproduced from fig. 6 of ref. [10].

with the above prediction based on model A, although we
have few data of Γk for kξ < 1. Figure 34(b), on the other
hand, plots τξ/τα = (χ0/2LRτα)t−7/4 against φ, suggest-
ing τξ/τα ∝ t−7/4. This means that LR ∝ 1/τα ∝ 1/η,
which needs to be explained and justified on a funda-
mental level in the future (see also sect. 5.3.9). These re-
sults suggest that the behaviour of glass-forming liquids
(2DPC) can be explained by a critical-phenomena-like sce-
nario in which the correlation length of glassy structural
order ξ diverges towards the hypothetical ideal glass tran-
sition temperature T0. We note that τξ should be the life-
time of crystal-like bond orientational order, which may
be the slowest timescale of the system.

5.3.7 Brief review on the analysis based on the four-body
density correlator

The first attempt to seek a growing correlation length in
computer simulations was made by Dasgputa et al. [318]
and Ernst et al. [319], but both of which failed in finding
such evidence. However, after the discovery of its exper-
imental evidence [320], many studies have revealed the
presence of growing dynamical correlation length with a
help of the increase in computer power and a consensus on
it has now been established firmly (see, e.g., [321]). Here
we describe standard methods analysing dynamic hetero-
geneity; namely, the particle trajectory analysis and the
four-time density correlation function analysis. Since the
former is straightforward, here we explain only the latter.

Density fluctuations play an important role in the
description of liquid as spin fluctuations in magnets.
The time correlation of density fluctuations δΨ(r, t) =
〈δρ(r, t)δρ(r, 0)〉 has been thought to be a key or-
der parameter of glass transition, which is often called
“Edwards-Anderson” or non-ergodicity order parameter,
since it is zero in an ergodic liquid state and becomes non-
zero in a non-ergodic glassy state. Then the natural cor-
relation function for this non-ergodicity order parameter
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is given by the following four-point correlation function:

G4(r, t) = 〈δρ(0, t)δρ(0, 0)δρ(r, t)δρ(r, 0)〉
−〈δρ(0, t)δρ(0, 0)〉〈δρ(r, t)δρ(r, 0)〉. (53)

Then the susceptibility of this order parameter, a four-
point susceptibility, is given by

χ4 =
∫

drG4(r, t). (54)

Although the above approach is theoretically more ap-
pealing, practically a mobility correlation is easier to han-
dle. Here we explain this following ref. [322]. First a time-
dependent order parameter that measures the number of
overlapping particles in two configurations separated by a
time interval t is defined as

Q(t) = ΣN
i=1Σ

N
j=1w(|ri(0) − rj(t)|),

where w(r) = 1 for r ≤ b whereas w(r) = 0 for r > b.
b is a typical amplitude of vibrational motion and set to
0.3–0.4a. The structural relaxation can then be character-
ized by the variance of Q(t) as

χ4(t) =
V

kBTN2

[〈
Q(t)2

〉
− 〈Q(t)〉2

]
.

The spatial correlation of the overlapping function w at a
time χ4(t) has a peak provides us with the characteristic
length of dynamic heterogeneity, ξ4.

5.3.8 Relationship between the structural relaxation time
τα, the lifetime of dynamic heterogeneity τDH, and that of
glassy structural ordering τξ

Next we consider the relation of critical-like dynamics of
the bond orientational order parameter to structural re-
laxation dynamics and its dynamic heterogeneity. We have
confirmed that the characteristic lengthscale of dynamic
heterogeneity ξ4 determined by the four-point density cor-
relator is almost equivalent to the characteristic length-
scale of bond orientational order parameter ξ [24,269,270,
10,37,271] (see also fig. 29). This is further supported by
a one-to-one correspondence between the degree of bond
orientational order and the slowness of particle dynam-
ics (see fig. 37) [10]. However, there is a large difference
in the lifetime of dynamic heterogeneity and that of the
bond orientational order parameter, as shown in fig. 34(b).
The former, which is characterized by the time when the
susceptibility χ4(t) has a peak, is the order of the struc-
tural relaxation time τα. On the other hand, the latter
can be a few orders of magnitude times longer than τα

for 2DPC (see fig. 34(b)). For 3D systems, on the other
hand, this difference becomes much smaller and less than
a factor of 10, although this is dependent on the degree of
supercooling.

Because of this disparity of the two lifetimes, one might
cast a doubt on the relevance of bond orientational order
in slow glassy dynamics. So we consider the reasons for this

discrepancy. First of all, dynamic heterogeneity is defined
by local particle dynamics, whose relevant wave number
is the order of the inverse of the particle size a. The four-
body density correlation apparently deals with the wave
number of 1/ξ and seems to pick up mesoscopic dynamics.
Although both reflect mesoscopic dynamics, there is still a
crucial difference. This is natural since the change in local
particle configurations is enough for local structural relax-
ation to take place. On the other hand, the lifetime of bond
orientational order parameter fluctuations is measured for
the wave number of 1/ξ (or, kξ ∼ 1) and thus it is not
associated with local relaxation, but with mesoscopic re-
laxation. We can see a steep dependence of Γk on the wave
number k (see fig. 34), as in critical phenomena [124].

Furthermore, by definition, the overlapping function
w becomes zero if a particle inside a cage moves together
with the cage itself over b. On the other hand, bond ori-
entational order does not decay if all the particles move
translationally or rotationally together. In such a case, the
dynamic heterogeneity detected by w should disappear
within a time scale of 6πηb2ξ/kBT , which is comparable
to 6πηa3/kBT . Thus, it is natural to expect that the life-
time of dynamic heterogeneity is shorter than that of bond
orientational order fluctuations, which may be given by
τξ = 6πηξ3/kBT . Furthermore, bond orientational order
is already not a single-particle quantity, and involves at
least 6 particles for 2D. Moreover, the medium-range na-
ture of bond orientational order imposes the coherency of
particle motion over its size and its lifetime τξ. Since struc-
tural and stress relaxation takes place locally, the lifetime
of bond orientational order fluctuations does not affect
the ordinary relaxation dynamics, but structural relax-
ation may be dominated spatially by medium-range bond
orientational order, which is a measure of the coherence
length of particle motion, as described above. However,
since the connection of the correlation length of the bond
orientational order parameter to the structural or stress
relaxation is not clear yet, further studies are necessary
to establish the importance of the static glassy structural
order in slow dynamics (see also sect. 5.5.3).

Here it may be worth noting that Shiba et al. [325]
compared the lifetime of dynamic heterogeneity obtained
from the four-point density correlator and that from
the bond-breakage lifetime introduced by Yamamoto and
Onuki [304,303]. They showed that the former is fragile
against low-frequency vibrations but the latter is robust.
We speculate that the correlation length of our bond ori-
entational order, which is of static origin, may have a link
to that of long bond-lifetime particles, which is of dynamic
origin, for polydisperse colloid systems.

Finally, we note that critical-like fluctuations are char-
acterized by its fractal nature. Fluctuations of high bond
orientational order, whose correlation length is the order
of ξ, contains shorter lengthscale fluctuations and thus lo-
cal structural relaxation can take place much faster than
the lifetime of long wavelength fluctuations, as we can see
in the k-dependence of Γk (see fig. 34). Note that both
structural and stress relaxation are accomplished by av-
erage particle displacements of less than half a particle
diameter [326].
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Fig. 35. (Colour on-line) The position of a tagged particle
for t = 0, 8τα, 16τα, 24τα, 32τα, and 40τα. Here φ = 0.617,
Δ = 9% and Fex = 0.014. The tagged particle is coloured in
white, whereas other particles are coloured from dark yellow
to light yellow, reflecting the value of Ψ̄6 (see the color bar).
The whitish background in the image (t = 0) represents the
extremely fast moving particles (hoppers [323]), whose local
mean squared displacements 〈Δr2(10τα)〉 > 2.5. This thresh-
old is the “hop” distance introduced in [323]. This figure is
reproduced from fig. 2 of ref. [324].

Although the lifetime of MRCO is different from the
structural relaxation time, we note that this long life-
time of bond orientational order can have physical sig-
nificance. For example, it leads to an apparent violation
of the fluctuation-dissipation theorem for 2DPC [324]. As
shown in fig. 35, when we drive a particle by using an
external force, its mobility largely fluctuates and depends
on the degree of local bond orientational order. When a
particle encounters a high bond orientational region, par-
ticle cannot penetrate into that region and have to wait
for its transformation to a state of low bond orientational
order. This is a consequence of transient elasticity of or-
dered regions due to the slow dynamics. This intermit-
tency is the origin of the apparent transient violation of
the fluctuation-dissipation theorem. This violation is ab-
sent in the time scale longer than τξ, as it should be for
an ergodic system [324].

We also note that the lifetime of glassy structural or-
der parameter fluctuations τξ might play a role in non-
linear shear thinning behaviour of a supercooled liquid.
Furukawa et al. [327] demonstrated that shear thinning is
not associated with the structural relaxation time τ , but
with a time scale much slower than τ by a few orders of
magnitude in 2D soft sphere mixtures. It was suggested
that the critical shear rate characterizing shear thinning
behaviour γ̇c might be given by γ̇c ∼ 1/τξ, as in the case
of a coupling of shear flow to critical concentration fluc-
tuations in a critical binary mixture [124]. Further careful
consideration is necessary on this problem, including other
possible mechanisms leading to shear thinning behaviour.

Finally we note that the lifetime of dynamic hetero-
geneity was directly estimated experimentally (see, e.g.,

[320,328–332]) and also discussed on the basis of numeri-
cal simulations (see, e.g., [333,334,321]). The link between
these observations and the lifetime of glassy structural or-
der (e.g., bond orientational order) is an interesting issue
since at least there is a decoupling between the dynamic
heterogeneity estimated from the four-point density cor-
relation function and the lifetime of bond orientational
order, as described above.

5.3.9 Critical phenomena with growing activation energy

In the above, we show a possibility that the correlation
length of the order parameter, ξ, exhibits a power law di-
vergence, whereas the activation barrier height, not the
relaxation time, exhibits a power law divergence in pro-
portion to ξd/2 towards the ideal glass transition point T0.
Here we consider such unconventional critical phenomena
with diverging barrier heights [335–339]. Below we follow
the argument given in ref. [337].

In conventional critical phenomena, there are no bar-
riers which diverge with the correlation length and the
dynamics is controlled by the diffusive motion [124]. The
transport coefficient L itself does not exhibit any signifi-
cant anomaly. This is because the characteristic scale of
the singular part of the free energy in volume ξd is of
the order of kBT , which yields the hyperscaling relation
dν = 2−α, where α is the critical exponent for the heat ca-
pacity. Thus, no activated dependence of times on length-
scale is expected. The critical dynamics does not involve
motion over large barriers. This is the consequence of the
fact that the competition which causes the critical point
is between energy and entropy and the contribution of the
latter to the free energy is always of kBT .

In certain random systems, on the other hand, the long
distance behaviour is controlled by competition between
two types of competing energy, rather than between en-
ergy and entropy. There is an ordinary critical divergence
for the static correlation length ξ:

ξ = ξ0ε
−ν . (55)

In these cases, however, it is expected that the system
should be controlled by a zero temperature fixed point at
which the important parts of the free energy grow as a
positive power of the lengthscale: F ∼ ξθ, where θ is the
exponent. Note that in the above we assume θ ∼= d/2.
Thus, it is natural to consider that the free-energy bar-
rier B is scaled as ξθ (for simplicity, we do not consider
a possibility of a different exponent). Since every quan-
tity on the lengthscale ξ experiences fluctuations due to
randomness, a distribution of barrier heights likely again
scales as ξθ. This implies an extremely broad distribution
of the associated times τα ∼ exp(B/kBT ). Thus, the nat-
ural valuable is not time, but the logarithm of time. Thus,
we expect that the structural relaxation time scales as

ln(τα/τ0
α) ∼ (ξ/ξ0)θ(Δa/kBT ), (56)

where τ0, ξ0, and Δa are the appropriate microscopic time,
length, and energy scales, respectively. By comparing this
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with eq. (46), we find

Δa/kBT = D. (57)

This relation implies that the energy scale of the interac-
tion which leads to the order determines the fragility of a
liquid (D). This is quite consistent with our picture (see,
e.g., ref. [24]). We note that Δa provides the natural en-
ergy scale of frustration. The configurationally averaged
dynamic correlation of a variable A for ln t and ξ then
scales as

CA(r, t, ε) ∼ ξ−2xAΓA

[
r/ξ, (ln t)/ξθ

]
, (58)

where xA is the scaling index for the operator A. This is
the basic picture drawn for random field magnets, which
exhibits glassy slow dynamics.

5.3.10 Relevance of the above picture to structural glass
transition

This scenario of activated dynamic scaling has been ex-
pected to be valid for other frustrated systems [337] and
even for structural glasses [338]. In our scenario, the rel-
evant order parameter is glassy structural order, more
specifically, bond orientational order in many cases. The
glassy structural order has a link to high solidity, or low
fluidity. Here we emphasize that high solidity, or low flu-
idity, means a long lifetime of configuration and not high
elastic modulus. Note that the distinction between liquid
and solid is made just by comparing the rheological relax-
ation time with the observation time. This link between
the glassy structural order parameter and solidity looks
natural since in our model of structural glass transition
the underlying ordering without frustration is crystalliza-
tion, which accompanies the emergence of static elasticity.
The lack of translational order is an origin of the absence
of the static elasticity in a glassy state. This basic link
between the structural order and the coherence of mo-
tion may be preserved even for the absence of long-range
order, which is a consequence of frustration effects. The
above analogy implies that the activation energy for ro-
tational motion of solid-like regions of size ξ, which is di-
rectly linked to high bond orientational order regions, is
roughly given by (ξ/ξ0)θ times of the activation energy
for particle-level motion, which is expressed by Δa. Fur-
thermore, the distribution of barrier heights is expected
to be proportional to (ξ/ξ0)θ, which is consistent with the
decrease of the stretching exponent β upon cooling. These
analogies provide a useful and important guide to under-
stand the activated nature of glassy slow dynamics.

In this scenario the fragility of liquid is linked to the
strength of frustration, which is positively correlated to
Δa. In the fragile limit or without frustration, there would
be no growing activation energy and the transition just ac-
companies ordinary non-activated dynamics. However, we
note that the complete absence of frustration to crystal-
lization is unlikely. In the strong limit, bond orientational
order cannot grow due to strong frustration and thus the

structural relaxation should obey the Arrhenius-like law.
Between the two limits, the growing activation energy is
given by Δa(ξ/ξ0)θ. This is basically consistent with our
simulation results [24,269,10,37,271].

In structural glasses, however, the order parameter
should have a deep link to the flow and viscoelastic prop-
erties and thus the order parameter should be coupled to
the velocity and/or stress fields. These features are ab-
sent in random spin systems where spins are located on
a lattice. Thus, the above simplified argument may still
not be enough to elucidate the true microscopic origin of
the slow dynamics, and further studies are certainly nec-
essary. In relation to this, it may be worth mentioning the
work by Dattagupta and Turski [340], which studied how
the kinetic effects associated with bond orientational or-
dering in a supercooled liquid lead to enhancement of the
fluid viscosity and the elastic moduli of the system on the
mean-field level as the glass transition is approached from
above.

5.3.11 Other simulation works relating to our scenario of
crystal-like structural ordering

Here we mention numerical simulation works, which also
indicated the presence of growing crystal-like structural
order in a supercooled state and the resulting dynamic
heterogeneity. Some time ago Coslovich and Pastore stud-
ied the dynamics and structure of supercooled liquid states
of binary mixtures of Lennard-Jones particles and Wahn-
ström mixtures by numerical simulations [341,342]. They
found locally favoured structures whose number density
increases upon cooling. In the Wahnström mixture, they
found that icosahedral structures are locally favoured
structures and grow upon cooling. This is apparently at
odds with our scenario and looks consistent with other
scenarios such as the frustration limited domain theory
and spin glass theory. However, it was found later [343,
344] that the Wahnström mixture crystallizes into MgZn2

consisting of tetrahedral network of Frank-Kasper bonds.
Thus, icosahedral structures are identified as key ingredi-
ents of Frank-Kasper clusters [344]. Coslovich [278] showed
that the growth of domains formed by interconnected lo-
cally preferred structures signals the onset of the slow-
dynamics regime and allows the rationalization of the dif-
ferent dynamic behaviours of the models. He also showed
that these growing structures have a link to the symme-
try of the crystal structure, which is consistent with our
scenario. However, this type of liquid behaves differently
from the systems we described above (see below).

In 2D polydisperse systems, we found the growth of
hexatic order and concluded that this is a manifestation
towards crystal-like bond orientational ordering, since the
underlying crystal has hexatic order [269]. However, this
order can also be interpreted as a 2D version of icosahe-
dral order [345]. This was a matter of discussion [346,347].
However, it was recently found in 3D polydisperse colloidal
systems that the key structure is characterized by fcc-type
crystal-like bond order parameter [10,37]. Although icosa-
hedral structures are formed in hard-sphere liquids, slow
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dynamics is mainly due to fcc-like bond orientational or-
der and not primarily due to icosahedral order [13]. This
supports our scenario that slowing down is more closely
linked to extendable bond orientational ordering.

Finally we mention that a recent study showed that
a modified Kob-Andersen binary Lennard-Jones mixture
crystallizes in lengthy simulations by forming pure fcc
crystals of the majority component [348]. This indicates
that crystallization is important even in a system which
has been believed to be an ideal glass former free from
crystallization. However, we note that in a system where
fractionation, or demixing, is prerequisite for crystalliza-
tion, there may be no direct link between glassy structural
order and the crystal structure (see below).

5.4 Counter examples for our scenario of critical-like
scaling and classification of glass-forming liquids

5.4.1 Counter examples for the scaling relation

So far we showed that the static and dynamic correla-
tion length coherently grow when approaching the glass
transition as eq. (55) and the structural relaxation time
slows down with the increase in the correlation length as
eq. (56). For the systems we studied we find ν = 2/d and
θ = 1/ν = d/2 within errors. However, a recent careful
study by Szamel and his coworkers [349] showed that for
a 3D binary hard spheres the dynamic correlation length
ξ4

∼= ξ40ε
−2 (or ε−1) and θ ∼= 1. This result is different

from ours, which questions the universality of a critical-
like scenario.

In relation to these behaviours, we note that Mon-
tanari and Semerjian [350] recently showed that a static
lengthscale grows with relaxation time, but the physical
relevance of that lengthscale may vary with the specific
relaxation regime considered and/or the type of glassy dy-
namics. Two recent studies have shown that the two types
of lengthscales (static & dynamical) can have very differ-
ent behaviour as the system becomes sluggish. For exam-
ple, Charbonneau et al. [351] showed that the growth of
the two lengths can be decoupled, which is in agreement
with both a facilitation-based description and the random
first-order transition (RFOT) theory, but not geometrical
frustration. A similar strong decoupling was also reported
by Hocky et al. [352] for three model supercooled liquids
which have similar static pair correlations. On the other
hand, Kob et al. [306] reported that the dynamical length
can behave non-monotonically as the static length steadily
grows, which is reminiscent of a critical-like behaviour and
is only consistent with RFOT theory.

Here we mention some controversies on the presence
or absence of a growing static lengthscale. In the case of
binary Lennard-Jones (Kob-Andersen) mixtures, no clear
growing structural lengthscales have been identified by a
point-to-set analysis [352], as mentioned above, whereas
Mosayebi et al. [296] found a diverging static lengthscale
by analysing the response of the inherent structure to
static perturbation. Similarly, for binary hard and soft

sphere mixtures, no local ordering, nor structural length-
scale has been found to accompany the growing dynamical
lengthscale [353,306,351,354], but again Mosayebi et al.
found the opposite for the latter mixture [355]. The pres-
ence of a growing static length in Kob-Andersen and repul-
sive binary mixtures has also been reported by Karmakar
and Procaccia [356]. These results suggesting a growing
static order are consistent with our scenario, but further
careful studies are necessary to settle this controversial
situation.

We also note that our recent study on the Wahnstöm
mixture also indicates the deviation from the scaling
behaviour we found for polydisperse hard-sphere liq-
uids [357]. This problem is directly linked to the funda-
mental question of whether the growth of the static cor-
relation length is responsible for slow glassy dynamics or
just a subsidiary effect and of whether its answer depends
on the type of systems or not. This issue is a cornerstone of
the debate between geometrical frustration-based descrip-
tions, facilitation-based descriptions, the RFOT theory,
and our scenario based on frustration against crystal-like
bond orientational ordering. Below we consider a possible
scenario accounting for this problem.

5.4.2 Classification of glass-forming liquids

On the basis of the above-mentioned non-universality of
the scaling behaviour, here we propose to classify glass-
forming liquids into three types on the basis of the type
and degree of frustration against crystallization. This is
based on a physical picture that a liquid has a general ten-
dency to form local or mesoscopic structures which lowers
the free energy locally. In this scenario, structural order-
ing acts to minimize the free energy locally and dominates
the regions of slow dynamics. In other words, glassy slow
dynamics is linked to the formation of local structures of
low free energy, which can support stress for a long time.

Tentatively we group glass-forming liquids into three
types [357]:

Type-I glass-forming liquids: Quasi-one-component sys-
tems (monodisperse or weakly polydisperse systems) in
which crystal-like bond orientational order grows upon
cooling (see, e.g., [24,10]). This type of system has a
direct link in symmetry between local free-energy min-
imum structures in a liquid and its crystal structure,
and thus bond orientational order can be a relevant
order parameter to describe glass transition.

Type-II glass-forming liquids: Systems in which non-
space-filling amorphous order develops as a part of
(quasi-)long range order upon cooling (see, e.g., [358,
341,342,344,278]). Type-II glass formers have rather
large crystal unit cells, and in a liquid state structures
having a link to only a part of the crystal structure are
formed. This type of frustration against crystallization
is called “entropic frustration” [344]. Entropic frustra-
tion may also be relevant for a liquid in a higher dimen-
sion, such as 4D liquid, for which a barrier for crystal
nucleation is higher [359]. In the case of the Wahnstöm
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mixture, the local free-energy minimum structure has
a link to icosahedral order. However, the local nature,
or non-expandability of this structure, leads to a pe-
culiar relation between static order and dynamics. In
type-II liquids, bond orientational order is still a useful
order parameter for characterizing a local free-energy
minimum structure. However, its link to the crystal
orientational symmetry may not be so direct. The way
of the growth of a static lengthscale may also be differ-
ent from type-I liquids. On this point, further careful
studies are highly desirable.

Type-III glass-forming liquids: Multi-component systems
in which no specific structural order has been de-
tected (e.g. some binary mixtures and highly poly-
disperse systems), but dynamical correlations exhibit
a growing lengthscale [360,361,303,304,362,363,326,
364,349]. Type-III glass formers involve phase separa-
tion or fractionation when they crystallize. This leads
to decoupling between low-free-energy local structures
in a supercooled liquid and crystalline structures. So
far we have controversial reports: For example, indi-
cations of static (translational) structuring in a bi-
nary Lennard-Jones system were reported in ref. [365],
whereas indications of neither translational nor bond
orientational ordering were reported in ref. [319]. Al-
though relevant low free-energy structures have not
been identified for binary mixtures in a clear man-
ner yet, we believe that there are static structures re-
sponsible for slow dynamics. This may be supported
by the finding of Widmer-Cooper et al. [366] for this
type of mixtures. Furthermore, Mosayebi et al. [355]
demonstrated that there is a static growing length for
both Kob-Andersen and binary soft sphere mixtures,
as mentioned above. At this moment, however, we can-
not rule out a possibility that slow dynamics is purely
a consequence of dynamical correlation. This is one of
the most important problems, which lies at the heart of
the nature of glass transition and, thus, further careful
studies are highly desirable.

Here we consider a possible unification of the above
different types of glass formers. The common scenario for
all types of glass formers may be as follows. Liquid has
a tendency to form locally or mesoscopically stable struc-
tures, which lower the free energy locally. The nature of
such structures may depend on the type of glass formers,
but it is common that these structures have a long lifetime
and thus low fluidity, reflecting lower local free energy and
large barrier. Growth of these long-lived structures in a
supercooled liquid may be a general origin of glassy slow
dynamics.

5.5 Relation between “mesoscopic” glassy structural
order and “microscopic” caging

Here we consider the relationship between mesoscopic
bond orientational order and microscopic caging in detail,
since this problem is linked to a fundamental question on
the very origin of slow dynamics.

Fig. 36. (Colour on-line) Schematic figure representing the
densely packed structures made of 13 particles, which has fcc,
hcp, and icosahedral bond orientational order. (a) fcc, (b) hcp,
and (c) icosahedron.

First we consider local bond orientational ordering and
its link to caging for a case of hard-sphere-like system.
We emphasize that local bond orientational ordering is
a direct consequence of packing effects for hard spheres.
The degree of caging is related to the hight of the lo-
cal radial distribution function g(r), on which the mode-
coupling theory relies. This peak height can be regarded
as a manifestation of short-range (bond orientational) or-
dering. In relation to this, we note that bond orientational
order is coupled to ρ(k)ρ(−k), as shown in eq. (12). Thus,
we argue that the caging is closely linked to bond ori-
entational order since bond orientational order in hard-
sphere-like liquid is a consequence of dense packing. The
natural number of nearest neighbour particles are 12 for
3D systems if the polydispersity is not so large. There are
three relevant bond order parameters linked to the dens-
est packing consisting of a central particle and 12 near-
est neighbour particles: fcc, hcp and icosahedral structure
(see fig. 36). It seems that this fact has been overlooked so
far, and only caging represented by the pair distribution
function has been considered. The fact that bond orien-
tational order, or more generally, glassy structural order,
is responsible for particle caging is related to the funda-
mental feature of caging, which is many-body effects and
cannot perfectly be captured by the two-body density cor-
relator alone. It may be worth noting that as discussed
above, bond orientational ordering is anti-correlated with
the number density of defective structures (voids), which
are necessary for particles or solid-like regions to move.
We note that bond orientational order is induced to lower
the free energy by gaining correlational entropy for hard
spheres.

For 3D hard spheres, similarly to chalcogenide glasses
(see sect. 5.11.9), we may regard particles surrounded by
less than 12 particles as a floppy state and those sur-
rounded by more than 13 particles as an over-constrained
state. When the number of nearest neighbours is 12, the
central particle is most efficiently caged. For hard spheres
of large polydispersity, this optimum number of neigh-
bouring particles depend upon the size of a central par-
ticle and those of its neighbouring particles. Again this
fact should be linked to the coupling between Qcry and
ρ(k)ρ(−k). This is very difficult to quantize, but may
still be correlated with some type of correlational entropy.
Thus, glassy structural order (e.g., bond orientational or-
der) is linked to local solidity, but caging is “not”.
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Next we consider local bond orientational ordering
for a case of directional energetic bonding. In liquids
like silica, silicon, and water, atoms or molecules tend to
form tetrahedral order by directional covalent or hydrogen
bonding. For these cases, local (tetrahedral) bond orienta-
tional order becomes a good measure of energetic caging.
For energetic caging, there is also a particular bond orien-
tational order, which lowers the local free energy by form-
ing directional bonding. There is an optimal condition to
form locally stable bonded structures: For chalcogenide
glasses which are mixtures of a few elements, this condi-
tion may be realized in the so-called intermediate phase
(see sect. 5.11.9). The role of glassy structural order should
be exactly the same as in the above case of hard spheres.

Now we consider which of glassy structural order pa-
rameter or caging is more relevant to glassy slow dynam-
ics. Our bond order parameter analysis shows its extended
or coarse-grained nature is essential for a direct correlation
between static order and dynamic heterogeneity [269,270,
10], as mentioned above. Berthier and Jack also suggest
that a connection between the static and dynamic prop-
erties of glass formers at the particle level is not so clear,
but such a connection does exist on larger lengthscales.
This is further confirmed by our recent experiments on
colloidal glasses [13] as well as a recent work by Cande-
lier [367]. For example, icosahedral order in hard spheres
cannot contribute to glassy slow dynamics in a direct man-
ner because of its isolated localized nature [13]. We argue
that this conclusion is a natural consequence of “meso-
scopic” caging due to bond orientational ordering. A sin-
gle cage is also represented by local bond orientational
order, however, the environment of the cage plays a cru-
cial role in determining the lifetime of this particular cage.
We emphasize that local rotation of bonds can easily lead
to the loss of memory, or the decay of the overlap func-
tion w. Thus, we may say that isolated local clusters alone
cannot cause slow dynamics. The cage concept seems to
miss the importance of such rotational motion in stress
(or structural) relaxation (see sect. 5.6). If the bond ori-
entational order is high around the cage, this means that
there are few defects or voids and the cage will live for a
long time because of constraint to both translational and
rotational motion. We stress that bond orientational order
represents a constraint on bond orientations and thus on
bond rotations, which are key to structural relaxation. It
is medium-range correlation that leads to the coherency
in the particle motion (both translational and rotational
motion) there, or the dynamic heterogeneity. Our study
shows that the delocalized nature of cages, or medium-
range structural correlation, is essential for glassy struc-
tural order, which is responsible for slow dynamics and
local solidity. The pair structural entropy s2 is calculated
by a two-body correlation, but it sees not only the nearest
neighbour particles independently but also their correla-
tions as well as the second and third nearest neighbours.
However, there should be a much better general indicator
for low free-energy configurations, which reflects many-
body correlation effects.

Thus, we may conclude that glassy structural ordering
has an apparent connection to the other concepts such

as caging and cooperative rearranging region, but at the
same time there is the above mentioned essential differ-
ence. For example, glassy structural order is linked to the
coherency of particle motion as a consequence of low flu-
idity, whereas a cooperative rearranging region puts focus
on cooperative motion required for the motion of a single
particle.

Finally, we consider a type of local particle motion as-
sociated with escape of a particle from its cage. Cage es-
caping motion is often expressed by hopping motion. How-
ever, we speculate that local circulative motion of particles
(or string-like motion) provides a much easier way for a
particle to escape from its cage (see also below) since this
type of transverse (or rotational) motion involves excita-
tion of little free volume.

5.5.1 Relation between glassy structural order and inherent
structures

About 30 years ago Stillinger and Weber [368] proposed a
very interesting idea that hidden structures in liquid may
be revealed by classifying particle configurations accord-
ing to multi-dimensional potential energy minima that can
be reached by steepest-descent paths (“quenches”). In a
two-dimensional Gaussian core model, they found that a
remarkable degree of polycrystalline order is hidden in a
liquid by vibrational distortion. This method allows us to
separate structures into a vibrational part and an inher-
ent structural part. Since this seminal work, the structure
of the system at its local potential energy minimum is
called “inherent structure”. This idea has also been used
to identify important structures hidden in liquids. For ex-
ample, in a Lennard-Jones liquid, icosahedral structures
were assigned to be inherent structures [369]. The appli-
cation of this idea to glass transition was also suggested,
and has contributed to its deeper understanding [370]. The
slowing down of the dynamics has been connected to the
presence of basins in the configuration space, or the poten-
tial energy landscape (see, e.g., refs. [371–373]). The short
time dynamics (fast β mode) was related to the process of
exploring a finite region of phase space around a local po-
tential energy minimum, whereas the long time dynamics
was connected to the transition between different local po-
tential energy minima. In this picture, upon cooling the
intrabasin motion becomes more and more separated in
time from the slow (and strongly T dependent) interbasin
motion. The decrease of the entropy of supercooled liquids
on cooling was associated with the progressive ordering of
the system in the configuration space, i.e., in the progres-
sive population of basins with deeper energy but of lower
degeneracy.

So it is natural to expect that inherent structures have
a close relation to our glassy structural order. For exam-
ple, the similarity between our results for static growing
length and those obtained by Mosayebi et al. [355] sug-
gests such a relation. There is certainly a connection, but
here we mention a few important difference. First inherent
structures are linked to local potential energy minimum,
but not local free-energy minimum, since it is obtained
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by quenching to the zero temperature and throw away
the entropic contribution. For example, in hard spheres
structural order is a consequence of maximizing the en-
tropy. The inherent structures in the hard-sphere limit
was studied by Stillinger and Weber [374] and suggested
to be randomly packed configurations. This is very dif-
ferent from our conclusion that the key structural motif
in a supercooled hard sphere liquid is fcc&hcp-like bond
orientational order. We speculate that inherent structures
for a polydisperse hard sphere liquid are random packed
structures only at low volume fractions above the freez-
ing volume fraction whereas structures with crystal-like
(fcc+hcp) bond orientational order at high volume frac-
tions. This point needs to be checked. Another impor-
tant difference is that quenching in searching the inherent
structures may lead to local translational ordering, which
is absent in a liquid state with thermal fluctuations.

5.5.2 What is the relevant order parameter describing glass
transition in general

In relation to the above, we consider what is the relevant
order parameter which can pick up a structural signature
of glass transition. For systems without random disorder,
the order parameter governing glass transition is the same
as a part of order parameters governing crystallization,
as described above. That is, it is the bond orientational
order parameter, which has a link to the local rotational
symmetry of the equilibrium crystal.

However, the order parameter for a system suffering
from quenched disorder, such as bidisperse colloids and
atactic polymers, is less obvious. A difficulty arises from
the fact that we do not have a mathematical means to ex-
tract such “configurational structural order” besides bond
orientational order. Nevertheless, “configurational struc-
tural order” can be identified as a state of low local free
energy, more specifically, a state of less voids or less con-
figurational entropy for hard spheres. In such a state, the
correlation volume, or free volume as a source of corre-
lational or vibrational entropy is locally homogeneously
shared among surrounding particles. Bond orientational
order satisfies this condition.

Glass transition can in principle take place in any sys-
tems if we can avoid crystallization. The glassy structural
order for particles with irregular shapes is, for example,
far from obvious. In our view, however, it must still be cor-
related with configurations of low local free energy. In re-
lation to this, we mention that to seek an unknown amor-
phous order (including bond orientational order) and its
correlation length, a cavity method or an estimation of
“overlap” is believed to be a powerful means with appli-
cability to various types of unknown structures [48,364,
306,375]. The so-called point-to-set length is estimated by
freezing the position of a set of particles in an equilibrium
configuration and performing sampling in the presence of
this additional constraint. Although this is certainly an
attractive method, the applicability of such point-to-set
correlations for an off-lattice liquid system does not look
so obvious and may need to be carefully checked.

Fig. 37. (Colour on-line) Relationship between glassy struc-
tural order and local mobility in 2DPC (φ = 0.740 and the
polydispersity Δ = 9%). (a) The spatial distribution of the
coarse-grained hexatic order parameter ψ. (b) The spatial dis-
tribution of the mean-square displacement over 10τα. We can
see the almost one-to-one correspondence between highly or-
dered regions and regions of low mobility (or low fluidity). This
figure is reproduced, using a part of fig. 1 of ref. [10].

5.5.3 A link between glassy structure ordering and slow
glassy dynamics: Observation

The above physical picture leads us to the following sce-
nario of slow glassy dynamics. Upon cooling, liquid en-
ters into a metastable state where long-range orienta-
tional and positional ordering is prohibited by frustration
effects. However, bond orientational order still develops
towards the ideal glass transition point T0 to lower the
free energy of the system. Bond orientational ordering is a
manifestation of many-body correlations among strongly
correlated neighbouring particles around a particle. For
a strongly disordered system, such unique bond orienta-
tional order linked to the symmetry of the equilibrium
crystal no longer exists, however, we expect that strong
correlations may still be represented by some structural
signature, which has a link to configurations of long life-
time, namely, low fluidity.

Hereafter, we consider a case in which bond orienta-
tional order is relevant, just for simplicity. In regions of
high bond orientational order, particle motion is on av-
erage slow since only the coherent motion while keeping
bond orientational order is allowed. A distinct correlation
between glassy structural order and slowness of particle
motion can be clearly seen for a 2D polydisperse col-
loidal simulation in fig. 37. We can see a similar structure-
dynamics correlation for a 3D polydisperse colloid exper-
iment in fig. 38. As mentioned above, the lengthscale of
the structural order, or the coherency of particle motion,
is a key to the slowness of dynamics. This may also be
the origin of dynamic heterogeneity. Here it may be worth
noting that a possible difference in the dynamic and static
correlation length. In fig. 37, we can see almost the one-
to-one correspondence between static order and mobility.
However, this visual comparison is affected by color codes
we employ. There is no proportionality between the static
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Fig. 38. (Colour on-line) Computer reconstruction from con-
focal microscopy coordinates for a polydisperse colloidal sus-
pension (φ = 0.575). Only particles of interest and their neigh-
bours are displayed. The depth of the image of 12 times of di-
ameters. Each particle is plotted with its real radius. (a) Par-
ticles having high crystal-like bond orientational order alone
(the order parameter was averaged over the order of the struc-
tural relaxation time). (b) Slow particles with respect to the
coarse-grained displacement. Due to particles going in and out
of the field of view, assignment of particles located very near
the edges of (a) and (b) were not accurate and have been re-
moved. (c) A typical configuration of bond ordered particles.
Icosahedral particles are shown in the same colour if they be-
long to the same cluster. If a particle is neighbouring both
crystal-like and icosahedral structures, it is displayed as icosa-
hedral. (d) Particles with more than 7 crystalline bonds. Note
that these crystal nuclei (still smaller than the critical nucleus
size) are located only in regions of high crystal-like bond orien-
tational order. This figure is reproduced from fig. 4 of ref. [13].

glassy structural order and the local dynamics, which is
clear from a strongly nonlinear relation between them (see
eq. (56)). Thus, the bare correlation length can be differ-
ent between the static and dynamic ones.

The average bond orientational order is anti-correlated
with the defect density and controls the average structural
relaxation, or the degree of fluidity. Its extrapolated value
at T0 may depend upon the degree of random disorder
or frustration in a system. Its critical-like spatio-temporal
fluctuations control the dynamical heterogeneity of a su-
percooled liquid. As discussed above, they determine the
spatial scale of dynamical heterogeneity measured by the
four-point density correlator, but their lifetime may be
decoupled from the lifetime of the dynamic heterogeneity.

The increase in glassy structural order, or the decrease
in defective structures, leads to the decrease in the flu-
idity and thus to the slowing down of structural relax-

ation. Such a direct link between glassy structural order-
ing and slow structural relaxation dynamics is a charac-
teristic nature of glass transition and is absent in ordi-
nary critical phenomena (see sect. 5.3.9). In the latter,
the slowing down of the dynamics is linked to the charac-
teristic size of the order parameter fluctuations alone, but
not directly to the transport coefficient such as viscosity.
For example, in a critical binary mixture, viscosity ex-
hibits a very weak logarithmic divergence towards a crit-
ical point [124]. Figure 32 shows defective structures or
voids in two-dimensional polydisperse colloids (2DPC).
As can be seen in fig. 32(a) and (b), voids or defective
structures are located in regions of low bond orientational
order, as expected. The number density of voids decreases
with an increase in the volume fraction φ and tends to be-
come zero at the ideal glass transition volume fraction φ0.
This implies that the ideal glass is a state of no voids, or a
state of high bond orientational order with random distor-
tion. This decrease of voids as a consequence of bond ori-
entational ordering may be responsible for slowing down
of dynamics and for glass transition that accompanies the
emergence of “quasistatic” elasticity. The remaining ques-
tion here is thus which of the average and the spatial het-
erogeneity is more essential for glassy slow dynamics.

To address this issue, we consider what lengths con-
trol the structural relaxation dynamics. There are two
candidates: i) a microscopic cage size and ii) a meso-
scopic lengthscale associated with dynamic heterogeneity.
Such a mesoscopic length may be of static or dynamic
origin. Scenario i) is based on the physical picture that
slow dynamics is due to the local caging of particles with-
out any relevant lengthscale beyond the interparticle dis-
tance a. This is the schematic MCT scenario of glassy
slow dynamics. Other models based on a single particle
picture such as hopping dynamics, energy landscape, and
free volume concept belong to this category [376]. On the
other hand, scenario ii) is based on the physical picture
that slow dynamics is a consequence of cooperative phe-
nomena where single particle dynamics is coherent over
the lengthscale ξ larger than a. For example, Berthier
et al. [376,377] showed that the lengthscale marking a
crossover from persistent to Fickian diffusion motion has
a significant connection to slow dynamics, i.e., dynamic
heterogeneity is a central aspect of the dynamics of super-
cooled liquids in that time and lengthscales are intimately
connected. This is consistent with our scenario. A recent
study by Furukawa and Tanaka [378–380] has also clearly
shown that the viscous dissipation in a supercooled liquid
takes place predominantly in the lengthscale over ξ (see
also [381,382]), which indicates the intrinsic importance
of the growing mesoscopic correlation length. Although
it remains an unsolved problem whether it has a static
or a kinetic origin, this study clearly indicates that the
mean-field (or microscopic) mechanism may not be rele-
vant, but the mesoscopic spatial correlation is essential to
glassy slow dynamics.

The next question is then whether the mesoscopic spa-
tial correlation is of purely kinetic or static origin. One
possible scenario is based on the kinetically constrained
model (see, e.g., [377]), which does not involve any static
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correlation but still exhibits strong dynamic correlation.
Another scenario is based on the presence of static spa-
tial correlation [366,383,269,270,10,37,271,345,297,384,
296,278]. The low fluidity of our glassy structural order
indicates that slow dynamics may be due to the grow-
ing static correlation over ξ, which can explain the above-
mentioned crossover from persistent to diffusional motion
quite naturally. The discussion in sect. 5.3.9 also supports
this conclusion.

Recently Karmakar et al. [300] showed in their study
of a binary mixture of Lennard-Jones particles that the
variation of the dynamic susceptibility and the structural
relaxation time with respect to the system size have an
opposite sign, contrary to the expectations of finite-size
scaling. This indicates that the dynamic susceptibility χ4

does not contain all of the information about the collec-
tive relaxation process in the liquid necessary to establish
the relaxation time. The authors found that relaxation
times are instead determined by configurational entropy.
On noting that our glassy structural order is linked to
structural entropy, which further has a direct connection
to configurational entropy, this finding may be consistent
with our scenario. In relation to this, we note that static
order (bond orientational order) is not “physically” equiv-
alent to dynamic heterogeneity, although they are closely
related to each other. For example, their lifetimes can be
very different (see sect. 5.3.8).

5.6 Strongly correlated liquid: A possible mechanism
behind a link between glassy structural order and slow
dynamics

Now we come to a central question of what is responsi-
ble for glassy slow dynamics. As we discussed above, we
have evidence for the importance of crystal-like extendable
bond orientational order in slow dynamics for quasi-one-
component type-I liquids. Historically bond orientational
order had attracted a considerable attention since the sem-
inal work of Frank [2]. In a series of pioneering papers
Nelson and coworkers [61,85,72] proposed that the char-
acteristic of supercooled liquids is the growth of icosahe-
dral bond orientational order but geometrical frustration
prevents the occurrence of infinite-range icosahedral or-
der and leads to a finite number of defects in the ground
state. The similar conclusion was independently derived
by Sadoc and coworkers [63]. Slow viscous relaxation was
also explained on the basis of this idea [385]. We have
shown [24,269,270,10,37,13] that extendable crystal-like
bond orientational order plays a much more essential role
in causing slow dynamics than non-extendable pentagonal
or icosahedral order does. This indicates that a growing
static correlation length is responsible for super-Arrhenius
slowing down of the dynamics. However, we note that this
order parameter is not relevant to slow dynamics in binary
mixtures, which has been shown by many researchers (see,
e.g., [386,319]).

One possible mechanism for slow dynamics is a modi-
fied MCT scenario which takes into account a novel cou-
pling between two-body density correlator and bond ori-
entational coupling (see eq. (12)). This may lead to a sit-

Fig. 39. (Colour on-line) Rotational correlation function
〈CR(Ψ̄ , t)〉 for T = 0.17 and Δ = 0.6. Here Ψ̄ is the degree
of antiferromagnetic order. Note that the dynamic heterogene-
ity smears out for large t. Here we can see particles having high
orientational order decays more slowly, which is the origin of
the stretched exponential decay and is responsible for dynamic
heterogeneity. This figure is reproduced from fig. 5a in [24].

uation that memory effects are more significant in regions
of higher bond orientational order. We speculate that this
may result in dynamic heterogeneity whose correlation
length is determined by that of bond orientational order.
We may say that density correlation is slaved by bond ori-
entational order. However, as discussed below, this mech-
anism itself may still miss the important constraint on
particle motion originating from many-body correlations.
We note that many-body correlations are included in bond
orientational order, but real dynamics is still controlled in
the level of the two-body density correlator in this scheme.

We have a feeling that the above type of microscopic
description based on two-body density correlation may not
be able to explain glassy slow dynamics. For example, if
we see a movie of particle motion in 2DSL [24], particle ro-
tation very rarely takes place inside red regions with high
crystal-like antiferromagnetic bond orientaional order (see
fig. 3). However, red regions themselves translationally mi-
grate slowly with time. We confirmed that particles hav-
ing higher bond orientational order relax more slowly (see
fig. 39) [24]. That is, the local structural relaxation is an
monotonically increasing function of the degree of antifer-
romagnetic bond orientaional order, or many-body corre-
lations. This implies that the structural relaxation reflects
motional coherency in ordered regions (see below).

Such many-body correlations and the resulting slow
dynamics can phenomenologically be expressed by a scal-
ing argument described in sect. 5.3.9, on noting a link
between more extended order in frustrated systems and
a higher activation energy for local structural relaxation.
Here we seek a more microscopic mechanism. In a se-
ries of interesting papers, Mountain and Thirumalai [387,
386,388] sought a local order parameter of glass transi-
tion. They suggested [386] that the orientation of near-
neighbour bonds might be a useful means of characteriz-
ing local order and a function ψ(t) which describes a pos-
sibility of the bond rotation provides a time scale for the
loss of local order. They also showed that neither bond
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orientational order nor its time correlation function is a
useful indicator of a binary glass. They also considered
its link to the stress relaxation [388]. The stress tensor
is a second-rank tensor, characterized by three principal
axes and their orientation. Thus, the local stress tensor,
associated with a finite number of particles, relaxes either
because of the magnitudes of the principle axes change or
because their orientations change.

Here we connect the above notion and our observa-
tion. Bond orientational order is directly linked to bond
orientation as its name stands. The rotation of bonds is
not blocked by localized bond orientational order such
as icosahedral order. However, it is transiently blocked
if there is extended bond orientational order. Note that
bond orientational order is the order stabilizing bond ori-
entation. This also has an interesting connection to the
idea described in sect. 5.3.5, where the degree of trian-
gular tiling is linked to the slow dynamics. This concept
of space tiling may be relevant not only to type-I liq-
uids, but also to type-II and -III liquids. This link be-
tween bond order and slow dynamics can be considered
to be a consequence of the fact that orientational correla-
tion is directly linked to higher order particle distribution
functions beyond the two-body correlation, which may be
the essential feature of glassy slow dynamics. In other
words, the two-point density correlation function may not
be enough or even not relevant to cooperative structural
rearrangements, which are key to slow dynamics. The rel-
evant motion for the structural relaxation may be more
of rotational character rather than of translational one.
The decay of the two-point density correlator might be a
consequence of rotational relaxation. On noting that the
viscosity is related to stress-stress correlation, this picture
seems physically natural for the mechanism of slow stress
relaxation and structural relaxation.

Finally we consider the link between static glassy order
and slow dynamics on the basis of the above picture. At
high temperatures, bonds can rotate almost independently
and their dynamics is described by the Arrhenius law
whose activation energy Δa is determined by the strength
of bonds that constrain bond rotation. With a decrease
in temperature, bond orientational order, for example, lo-
cally better triangular tiling and tetrahedral tiling respec-
tively for 2D and 3D hard spheres, develops its spatial cor-
relation. This spatial correlation may have a long lifetime,
which can be longer than the structural relaxation time.
This spatial correlation over ξ puts a constraint on the ro-
tational motion of bonds, which leads to slow local struc-
tural relaxation time. We note that in frustrated systems
more extended higher-order regions suffer from stronger
frustration effects and require a higher activation energy
for reconfiguration. Thus, the distribution of bond orien-
tational order parameter leads to the broad distribution of
the relaxation time (see fig. 39) [24]: Particles with higher
antiferromagnetic order Ψ̄ have longer rotational corre-
lation time. This may be an origin of strong structure-
dynamics correlation (see fig. 37). The major stress (or
structural) relaxation may be associated with local bond
rotation under the constraint from spatial coherence. The
activation energy of such local structural relaxation may

be determined by the coherence length ξ: Under frustra-
tion, it may scale as Δa(ξ/ξ0)θ (see sect. 5.3.9). For exam-
ple, this scenario can also explain the fact that long-lived
bond orientational order fluctuations can block the trans-
lational motion of a tagged particle, but at the same time
allows much faster structural relaxation. We note that the
structural relaxation time is an average of the local relax-
ation times (see fig. 39), which results in a very broad dis-
tribution. We believe that long-lived low local free-energy
configurations such as configurations of high bond orienta-
tion order leads to slow structural relaxation due to spatial
coherence of structural relaxation, which forms the slow
relaxation part of the relaxation spectrum. In this sense,
a supercooled liquid with glassy slow dynamics may be
called “strongly correlated liquid”.

We also note that regions of high bond orientational
order can translationally migrate coherently, which leads
to the decay of the overlap function, or the four-point den-
sity correlation. This provides an intuitive explanation for
a translational-rotational decoupling. Since this argument
is speculative, however, further detailed studies are nec-
essary but this provides a plausible explanation on the
very origin of slow relaxation near the glass transition.
A clearer physical picture for the violation of the Stokes-
Einstein law has recently been provided by Furukawa and
Tanaka [380].

5.7 Relation between MRCO, softness of structures,
and the excess vibrational density of states

The physical properties of a topologically disordered
amorphous material (glass), such as heat capacity and
thermal conductivity, are known to be markedly differ-
ent from those of its ordered crystalline counterpart. The
understanding of these phenomena is a notoriously com-
plex problem. One of the universal features of disordered
glasses is the so called “boson peak”, which is observed
in neutron and Raman scattering experiments. The boson
peak is typically ascribed to the excess density of vibra-
tional states. Recently we discovered evidence suggestive
of the equality of the boson peak frequency to the Ioffe-
Regel limit for “transverse” phonons, above which trans-
verse phonons no longer propagate [33].

In this study, we argued that boson peak is associated
with (quasi-)local transverse vibrational modes, whose fre-
quency is located around the boson peak frequency. We
confirmed the absence of scattering of longitudinal and
transverse phonons due to inhomogeneities of elasticity
up to the Ioffe-Regel frequency. This is consistent with
the absence of the wave number dependence of the shear
elastic modulus in a mesoscopic and macroscopic length-
scale revealed by Furukawa and Tanaka [378–380].

Since the very origin of the boson peak is out of scope
of this article, here we discuss the relationship between
the degree of bond orientational order and the vibra-
tional degrees of freedom of structures, which is related
to the structural origin of the boson peak. Here we con-
sider this problem, using our study on 2DSL [33]. In our
2DSL, there are three structural candidates which may
give rise to quasilocalized vibrational modes with the
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Fig. 40. (Colour on-line) Structural origin of the boson peak.
(a) Spatial distribution of Di(ωBP), which is the amplitude of
the vibration modes with frequencies around the boson peak
frequency. Particles with less boson peak intensity are more
blue. The background is coloured the same way (darker for less
boson peak intensity), and this same background is repeated in
(b) and (c), to see the correlation of Di(ωBP) with local order
and local volume, respectively. Note that we equilibrated the
liquid of Δ = 0.6 at T = 0.18 and P = 0.5 and quenched it to
T = 0.02 to prepare this sample. Thus, MRCO is more devel-
oped and the number density of LFSs is higher than in samples
prepared by a rapid quench. (b) Spatial distribution of the or-
der parameter Ψ̄i(r) (see [24] for its definition). Dark green,
green, and white particles represent MRCO, normal liquids,
and LFSs, respectively. (c) Spatial distribution of local volume
(the area of Voronoi polygon per particle). Brighter particles
have larger local volume (less local density). (d) D(ω)/ω per
particle averaged over the one-third of particles having large
local volume (“large”), small local volume (“small”), interme-
diate local volume (“intermediate”), and all the particles. This
figure is reproduced from ref. [33].

characteristic frequency ∼ ωBP and couple with trans-
verse phonons: medium-range crystalline (antiferromag-
netic) order (MRCO) (dark green particles in fig. 40(b)),
locally favoured structures (white particles forming pen-
tagons in fig. 40(b)), and low-density defective structures
(white particles in fig. 40(c)) in the normal liquid struc-
ture. In figs. 40(a)-(c), the background (outside a particle)
colour is brighter for particles with high excess vibrational
density of states, Di(ωBP).

Comparison of the colour between particles and their
background in fig. 40(b) tells us that the vibrational am-
plitude is small in regions of high MRCO, which indicates
that particles belonging to MRCO are not responsible for
the boson peak. This is natural in the sense that the ex-
cess vibrational state should be linked to structural disor-

der. The vibrational density of states excess over those of
the crystal should be smaller for more crystal-like struc-
tures. On the other hand, locally favoured structures (pen-
tagons) at least partly contribute to the boson peak since
white particles in fig. 40(b) often have large Di(ωBP). We
see the most distinct (positive) correlation between the
local boson peak intensity and the local (free) volume, or
the low-density defective structures (see fig. 40(c)). This
relation can also be clearly seen in fig. 40(d), where the
boson peak intensity for particles with large, intermediate,
and small free volume is shown. Particles with larger free
volume mainly contribute to the boson peak over the De-
bye value. These defective structures are linked to floppy
modes because of their softness against shear deforma-
tion: Structural disorder allows particles to have rather
isolated “transverse” vibrational modes since the number
of constraints may be smaller than the number of the de-
grees of freedom for the defective structures. Thus, we
argue that transverse vibrational modes associated with
low-density defective structures are responsible for the ex-
cess vibrational density of states, or the boson peak. This
conclusion was recently supported by experiments in a
two-dimensional colloidal system [389] and also by simu-
lations of a realistic metallic glass [390]. Our results also
suggest that these (quasi-)localized transverse vibrational
modes are responsible for sound absorption, or dissipation
of transverse phonons, over a wide frequency range below
ωBP. The mechanism behind this needs to be clarified in
the future.

5.8 Confinement effects on the structure and
dynamics of a supercooled liquid

Spatial confinement is known to induce a drastic change in
the viscosity, relaxation times, and flow profile of liquids
near the glass (or jamming) transition point [391–394].
The essential underlying question is how the presence of
a solid wall affects the dynamics of densely packed sys-
tems. We recently studied this problem [395], using exper-
iments on a driven granular hard-sphere liquid [270] and
numerical simulations of polydisperse and bidisperse col-
loidal liquids. The nearly hard-core nature of the particle-
wall interaction provides an ideal opportunity to study
purely geometrical confinement effects. We revealed that
the slower dynamics near a wall is induced by wall-induced
enhancement of glassy structural order, which is a man-
ifestation of strong interparticle correlations. By gener-
alizing the structure-dynamics relation for bulk systems
(see eq. (45)), we find a quantitative relation between the
structural relaxation time at a certain distance from a wall
and the correlation length of glassy structural order there.
That is, the structure-dynamics correlation found in bulk,
τB
α = τB

0 exp[DB(ξB/ξB
0 )d/2] (see eq. (45)) [24,269,270,10,

37] can be extended to confined systems as follows:

τ loc
α (φ, l) = τB

0 exp
[
DB(ξloc(φ, l)/ξB

0 )d/2
]
, (59)

ξloc(φ, l) = ξloc
0 (l)

(
φ

φB
0 − φ

)2/d

, (60)

ξloc
0 (l) = ξB

0 + ξW
0 exp(−l/l∗). (61)
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Fig. 41. (Colour on-line) 3D polydisperse colloidal liquid
(3DPL) confined between two smooth flat walls. (a) Spatial dis-
tribution of Q̄6 for all particles at the volume fraction φ = 0.563
and Δ = 8%. (b) Particles having Q̄6 > 0.25 (the same
as a). We can clearly see that particles near the walls have
higher hcp-like bond orientational order. (c) The φ-dependence
of τ loc

α (φ, l) for 3DPL (Δ = 8%) confined between two flat
walls. Solid curves are fits to data with ξW

0 = 0.45. (d) The
φ-dependence of l∗. We can see that l∗ ∝ ξB . The curve is
l∗ = l0[(φ

B
0 − φ)/φ]−2/3, where l0 = 0.507 ∼= ξB

0 = 0.50. This
figure is reproduced from fig. 4 of ref. [395].

An example of the fitting of these relations to the results
of a 3D polydisperse colloidal liquid confined between two
flat smooth walls is shown in fig. 41.

Here we note that the above eqs. (59)–(61) have sig-
nificant physical implications. First, eq. (59) suggests that
the relation between the structural relaxation time, τB

α ,
and the correlation length of glassy structural order, ξB,
found in the bulk systems [24,269,270,10,37] also holds
for confined systems, except that the l-dependence of the
local correlation length ξloc must further be taken into ac-
count. Furthermore, eq. (60) indicates that ξloc obeys the
same power law for φ as the bulk correlation length ξB. All
the wall effects are expressed by eq. (61): the l-dependent
bare correlation length, ξloc

0 (l). That is, a wall influences
only the bare correlation length. This is a reflection of the
fact that near a wall, motion is more correlated even in a
dilute state. Note that the bare correlation length is the
correlation length at a dilute state far from φ0. Thus, the
effects are expressed by a new term ξW

0 , which represents
the extra bare glassy structural ordering induced by the
presence of the wall. Our finding further supports the sce-

nario that static glassy structural ordering is the origin of
the slow glassy dynamics of a supercooled liquid.

Here it should be noted that the functional form of
τα(l) we employed is different from that was used in
refs. [306,396–398,394]:

ln
[
τ loc
α (l)
τB
α

]
= A(T ) exp

[
− l

l∗

]
,

where A(T ) is a function of T . Our relation is expressed
in the following form, using eqs. (59)–(61):

ln
[
τ loc
α (l)
τB
α

]
=

DT0

T − T0

[(
1 +

ξW
0

ξB
0

exp(−l/l∗)
)d/2

− 1

]
.

These relations are almost the same for 2D (d = 2) except
that in our case A(T ) = (ξW

0 /ξB
0 ) DT0

T−T0
, but different for

3D (d = 3). This difference should affect the estimation
of ξ. Thus, further careful studies are necessary on this
point.

5.9 Free energy governing crystallization and
vitrification

Here we briefly mention the free energies, which have been
proposed to describe the state of a supercooled liquid
and/or a glass, and then we describe our view. On the
details on each theory, please refer to [50,53,399,49].

5.9.1 Mode coupling theory

Mode coupling theory is a microscopic theory, which
is extended from a liquid side to a low-temperature
non-ergodic state [50,249,53]. The ergodic–to–non-ergodic
transition is basically kinetic, and the free energy em-
ployed is that describing a liquid state. The kinetic equa-
tions describing the particle density ρ(r, t) and the mo-
mentum density j(r, t) of a one component liquid (parti-
cle mass m, average density ρ0, and viscosity ν0) are given
by

m
∂

∂t
ρ(r, t) = −∇ · j(r, t), (62)

∂

∂t
j(r, t) = f − ν0

mρ0
j(r, t) + ζ0(r, t), (63)

where ζ0(r, t) represents thermal force noises satisfying
the following fluctuation dissipation theorem:

〈ζ0(r, t)ζ0(r′, t′)〉 = 2kBTν0Iδ(r − r′)δ(t − t′). (64)

f(r, t) is the force density acting on the liquid, which is
induced by the inhomogeneous density field, and given by

f(r) = −ρ(r)∇δF{ρ}
δρ(r)

. (65)
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Here F{ρ} is the free-energy functional expressed as (see
sect. 2.3.1)

F{ρ} =
∫

f(ρ(r))dr = kBT

∫
dr ρ(r)

[
ln

ρ(r)
ρ0

− 1
]

+
∫∫

dr dr′(ρ(r) − ρ0)c(r − r′)(ρ(r′) − ρ0).

(66)

Here c(r − r′) is the Ornstein-Zernike direct correlation
function of the liquid. The localization cost is the same
as for a perfect gas, whereas the interaction term involves
the direct correlation function of the liquid, a renormalized
form of the bare interaction potential. The direct correla-
tion function is determined by the condition that the func-
tional gives small fluctuations in density reproducing the
static liquid structure factor. For examples, if one expands
the logarithm of the above equation to second order in
the density fluctuations, one obtains the usual expression
relating the direct correlation function to the static struc-
tural factor S(k). For hard spheres, the standard Percus-
Yevick form is often employed for c(r). Higher order terms
in the density can also be included. However, we note that
information on bond orientational correlations, which we
believe is important for the description of a supercooled
liquid, is missed as a result of various assumptions com-
monly used in the standard liquid-state theory. Thus, we
may say that the free energy used in MCT is effectively
that for a liquid together with the assumptions made.

It may be worth noting here that Dasgupta and
Valls [400] studied the dynamic behaviour of a dense hard-
sphere liquid by numerically integrating a set of Langevin
equations that incorporate a free-energy functional of the
Ramakrishnan-Yussouff form and found that an fcc config-
uration, which is a crystal, as an inhomogeneous minimum
of the free energy by using a set of bond orientational order
parameters. However, this type of model cannot reproduce
the development of bond orientational order fluctuations
(neither crystal nor translational order) in a “liquid” state.
We speculate that in a supercooled liquid many body cor-
relations represented by bond orientational order, which
may be the origin of cooperativity, plays a more important
role than (local) two-point density correlator.

5.9.2 Random first-order transition theory

The random first-order transition theory is based on the
density functional approach, which relies on the Linde-
mann criterion for vitrification (see, e.g., refs. [261–263]).
The density functional considers the cost of forming any
density wave by breaking the free energy into an en-
tropic localization penalty and an interaction term. It is
given by the same form as the above free energy given
by eq. (66) (see, e.g., ref. [401], for hard spheres). In the
frozen aperiodic state, the density wave is decomposed
into a sum of Gaussians centred around random lattice
sites, ρ(r) = Σi(π/3)3/2 exp(−α(r − ri)2), where α rep-
resents the effective local spring constant that determines

the rms displacement from the fiducial lattice site. The lo-
calization sites are given by {ri}. So the reference state of
the free energy is chosen to be a glassy state with “amor-
phous order” in this theory. The above α can be regarded
as the Lindemann parameter measuring the scale of vibra-
tional motions in an amorphous state. This relies on the
clear separation of fast vibrational motions from the slow
motions, which is confirmed by the mode coupling theory,
to which this theory is expected to be connected at a high
temperature.

5.9.3 Frustrated spin glass theory based on hypothetical
icosahedral ordering

A model of glass transition was proposed on the basis of a
picture that a liquid tends to have structural order, which
is energetically preferred locally over simple crystalline
packing, but frustrated over large distance [2,61–63,338].
An icosahedral structure was considered to be such a can-
didate. Although locally favoured structures play a central
role in both this type of theory and our model, there is an
important difference between them: In the above model,
locally favoured structures tend to attain long-range order
as shown below, whereas in our model they compete with
the ordering into a crystal.

Steinhardt et al. [61] suggested that structural glass
can be modelled by the following model Hamiltonian rep-
resenting frustration in a lattice model of interacting icosa-
hedra:

H = −JQΣ〈i,j〉Σ
6
m=−6Q6m(ri)Q∗

6m(rj)
+Σi�=jΣjKQ(rij)mQ6m(ri)Q∗

6m(rj). (67)

Here ri denotes a site on a regular lattice, and the sum
in the first term denotes a sum over nearest-neighbour
pairs of sites. The positive interaction energy JQ tends
to align neighbouring icosahedra. Frustration is modelled
by the much weaker long-range interaction KQ(rij) in the
second term, whose sign is randomly changed, in analogy
with spin glasses. The coupling JQ favours a transition
to an orientationally ordered state, whereas the random
long-range part acts like a temperature-dependent random
field of strength

heff
6,m(rij) = Σj �=iKQ(rij)〈Q∗

6m(rj)〉. (68)

This field becomes stronger as Q6(T ) increases. Thus,
long-range ordering is prevented by the “feedback” of ex-
tended orientational order into a random field [61] and a
glassy state is formed upon cooling.

This scenario might somewhat look similar to ours.
However, there is a crucial difference between them: In the
above model, the long-range ordering of Q6m is prevented
by internal frustration of the order parameter itself. The
crystallization has to be avoided purely kinetically in the
above model. Note that this model does not describe the
crystallization itself. On the other hand, our model de-
scribes both crystallization and vitrification in the same
framework. This difference is related to the fundamental
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question of whether a liquid tends to attain long-range
icosahedral order or long-range crystalline order in a su-
percooled state.

5.9.4 Frustration limited domain theory

Kivelson and Tarjus et al. demonstrated an interesting
possibility of a universal description of the temperature
dependence of viscosity [260]. They employed the Hamil-
tonian with frustration, which is basically similar to that
of Steinhardt et al. [61] (see eq. (67)), and used the con-
cept of the avoided critical point. Their Hamiltonian has
the following form:

H = −JSΣ〈ij〉Si · Sj + KSΣi�=j
Si · Sj

|Ri − Rj |x
, (69)

where JS and KS are both positive and 0 < x < 3. The
first (short-range, ferromagnetic) term favours long-range
order of the locally preferred structure (in their terminol-
ogy), whereas the second (long-range antiferromagnetic)
term represents the frustration effects. Note that the or-
dering is prevented by internal frustration of the order
parameter itself in their case, which leads to the concept
of the avoided critical point. More explicitly, this model
postulates an icosahedral ordering free from frustration
in a curved space, which has a critical point. In Euclidian
space, however, the critical point is avoided due to frustra-
tion and a system has frustration-limited domains, which
cause dynamic heterogeneity and lead to slow dynamics.
We note that the underlying transition is of second order
in their model.

5.9.5 Our standpoint

As described above, previous theories of glass transition
put a focus on the vitrification branch, and neglect the fact
that a liquid may crystallize or regard crystallization as
a separate phenomenon. Thus kinetic freezing (kinetically
constrained model or mode coupling theory) or exotic or-
dering (spin-glass-type, random first-order transition, and
frustration limited domain theory) have been considered
to be key to glass transition.

As we mentioned in the beginning of this section (see
fig. 27), it may be physically natural to consider that
both crystallization and glass transition are governed by
the same free energy which is a function of density or-
der parameter ρ, bond orientational order QCRY whose
symmetry is consistent with the equilibrium crystal, and
bond orientational order QLFS which has a symmetry
of locally favoured structures: f(ρ,QCRY,QLFS). QCRY

and QLFS correspond to interparticle interactions com-
patible to the equilibrium crystal and those incompatible
to it, respectively. Crystallization takes place under co-
operation between orderings of ρ and QCRY. The pres-
ence of QLFS and its coupling to the other order parame-
ters increase the nucleation barrier, as mentioned before,
but do not alter crystallization itself once it takes place

due to strong constraint (or, filtering effects) of transla-
tional order. On the other hand, glass transition takes
place when long-range QCRY and ρ ordering is prohibited
(kinetically) by a large nucleation barrier caused by its
coupling to QLFS, which causes frustration effects. In the
absence of ρ ordering, which is the case of a metastable
supercooled liquid before crystal nucleation, we need to
consider only the couplings between QCRY and QLFS. As
speculated above, this may lead to critical-like bond orien-
tational ordering towards the ideal glass transition point
T0. The fragility and the glass-forming ability of a liquid
can be explained at least partly by the degree of frustra-
tion between the two types of the bond orientational order
parameters.

When there are two competing crystal polymorphs
(CRY1 and CRY2), the free energy may be described as
f(ρ,QCRY1,QCRY2). In relation to this, we should men-
tion a series of beautiful experiments on a supercooled
state of 2D magnetic colloids with frustration [402–405].
These studies show that a supercooled liquid has the low
free-energy configurations locally, which include crystal-
like patches, and these configurations have a clear link to
slow dynamics. This may be regarded as a clear mani-
festation of the fact that the free energy controlling the
crystallization also governs glass transition.

For systems with random disorder (e.g., polydisperse
colloids and atactic polymers), we should also consider
random disorder effects on QCRY and ρ orderings. How-
ever, the basic physics should remain the same as the
above. We note that the disorder can be annealed by phase
separation or fractionation for binary mixtures or polydis-
perse colloidal systems.

As explained above, in other theories of glass transi-
tion, the peculiar free energy responsible for glass tran-
sition, which is often chosen to favour glassy disordered
structures, is considered separately from the free energy
describing crystallization. Thus, it is difficult for this type
of theories to explain the glass-forming ability. We believe
that it is more natural to consider the same free energy
for both crystallization and vitrification (and quasicrystal
formation).

The above argument may be valid at least for one-
component liquids. However, we should note that for a
system like a binary mixture, in which crystallization takes
place only when accompanying phase separation, there is
complexity. The metastability, i.e., the separation between
structural relaxation, phase separation, and crystalliza-
tion, plays an important role in the selection of struc-
tures of low local free energy within the metastable state.
For such a case, we need to include the contributions of
the concentration field, mixing entropy, and interactions
between the components. Glassy structural order in this
case is not necessarily linked to crystal-like structures, but
should still be linked to structures of low local free energy,
as mentioned above. For 2DBC, such structures may be
linked to distorted triangular tiling without voids, or long-
lived stress-bearing solid-like structures. We note that the
driving force for this structural order is common to that
in 2DPC: Reduction of the free energy by gaining the cor-
relational (or vibrational) entropy while an expense of the
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configurational entropy. We emphasize that low configu-
rational entropy has a link to low fluidity, or high solidity,
which is further connected to the coherence of particle
motion.

5.10 Glassy structural ordering, dynamic
heterogeneity, and the Kauzmann paradox

So far we discuss the hypothetical ideal glass transition
point T0 as a hidden critical point of bond orientational
ordering under frustration. However, this is based on the
assumption that crystallization, or the long-range density
ordering, is avoided at least practically. Here we consider
the validity of this assumption. This problem is directly
linked to the so-called Kauzmann paradox. It is known
that the entropy of a supercooled liquid decreases more
rapidly than that of the crystal and thus the extrapo-
lated value of the former becomes equal to the latter at
the Kauzmann temperature TK. Further extrapolation be-
low TK leads to an unphysical situation that the entropy
of a disordered liquid is lower than the ordered crystal,
which results in the violation of the third law of thermody-
namics. This is known as the “Kauzmann paradox” [406],
which has been one of the most fundamental problems
of liquid-glass transition for more than 50 years [1,245,
283,48,246,49]. Some time ago, we proposed its resolu-
tion by answering another fundamental question of how
deeply we can supercool a liquid. We demonstrated that
we can never supercool an “equilibrium” liquid below the
lower metastable limit, TLML, since a liquid should crystal-
lize before its equilibration. By proving that TLML > TK,
thus, we resolved the Kauzmann paradox, or the entropy
crisis. The scenario is schematically shown in fig. 42 (on
its details, see ref. [280]). We note that the presence of
TLML was recently suggested for a metallic glass experi-
mentally [407].

The key to the above conclusion is that the kinetics of
crystallization is controlled not by macroscopic viscosity,
but rather by translational diffusion. In an ordinary liquid,
the macroscopic viscosity is inversely proportional to the
translational diffusion. However, this is not the case for a
supercooled liquid. This breakdown of the Stokes-Einstein
relation is considered to be a consequence of dynamic
heterogeneity [42,47,376–380]. As schematically shown in
fig. 42, the crystal nucleation rate is empirically known
to be controlled by translational diffusion rather than by
viscosity [280]. The fundamental origin of this decoupling
may be related to the nonlocal nature of viscous transport
and the intrinsic decoupling between the longitudinal and
transverse dynamics, which were recently revealed by Fu-
rukawa and Tanaka [378–380]. The viscosity depends on
the wave number k even in a mesoscopic wave number
regime [381,378,382,379,380]. It is low at a microscopic
lengthscale, but increases towards the macroscopic value
with a crossover length of ξ. This indicates that the vis-
cous dissipation mainly comes from the lengthscale larger
than ξ. Since crystallization proceeds by material trans-
port by diffusion, it is natural to assume that its dynamics

Fig. 42. Schematic figure representing the temperature de-
pendence of the characteristic times (τα, τD, and τx) of a
glass-forming liquid. The structural relaxation time τα obeys
the Vogel-Fulcher-Tammann equation and diverges with ap-
proaching T0. The translational diffusion mode τD is, on the
other hand, decoupled from the structural relaxation mode τα

at TB upon cooling. Below a melting point Tm, a liquid tends
to crystallize and thus the characteristic time of nucleation and
crystallization, τx, becomes finite below Tm. Reflecting the de-
coupling of τD from τα at TB , τx also changes its temperature
dependence at TB . Since the relevant transport process of crys-
tallization is not the structural relaxation mode, but the trans-
lational diffusion one, the true τx (τD branch) is considerably
shorter than τx estimated with the assumption that τt = τα

(τα branch). This figure is reproduced from fig. 2 of ref. [280].

is governed by translational diffusion rather than by vis-
cosity, although the very mechanism behind this remains
elusive.

Thus, our scenario indicates that it is “dynamic het-
erogeneity” that destabilizes a deeply supercooled liquid
state as well as a glassy state against crystallization. An-
other effect of dynamic heterogeneity (or, more specifi-
cally, MRCO) on destablization of a metastable super-
cooled liquid state against crystallization will be discussed
in sect. 6. This has a significant implication on the stability
of a glassy state. The relevance of this scenario was also re-
cently shown by numerical simulations [408–410]. We note
that a similar scenario for the resolution of the Kauzmann
paradox was also proposed by Cavagna et al. [411] on the
basis of the numerical study of a lattice spin model.

In glass-forming systems, crystallization should take
place before reaching the ideal glass transition point T0,
as far as we equilibrate a liquid for a time sufficiently
longer than the structural relaxation time τα. More pre-
cisely, bond orientational ordering already starts in a su-
percooled liquid state and grows upon cooling, however,
crystallization (cooperative bond orientational and trans-
lational ordering) takes place before reaching the hypo-
thetical ideal glass state. Nevertheless, T0 may have an
important conceptual meaning in our understanding of
glass transition as a hypothetical hidden ordering point of
bond orientational order (under frustration).
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What we described above can be rephrased as follows:
In a supercooled liquid state, before long-range crystalline
bond orientational ordering takes place, crystal-like bond
orientational orders compete with those incompatible to
them, which leads to slow glassy dynamics. For systems
suffering from random disorder effects bond orientational
order still grows under frustration effects. When cooper-
ative bond orientational and density ordering comes into
play, however, a metastable supercooled state or a glass
state transform into a crystal. This retardation of long-
range density ordering, which is essential for vitrification,
is controlled at least partly by the strength of frustration
effects on crystal-like bond orientational ordering, which
is prerequisite for translational ordering to take place (see
sect. 6).

For a system with quenched disorder, another pro-
cess may be required for crystallization to take place, as
mentioned before. For example, for colloidal systems with
large polydispersity, phase separation and the resulting
fractionation are prerequisite for crystallization [412]. Al-
though this complicates the situation, the basic behaviour
should be the same. For binary mixtures, phase separa-
tion may lead to crystallization before reaching T0 or φ0.
In some cases where it is intrinsically difficult to remove
quenched disorder, crystallization may never take place.
An atactic polymer may be such a case. Then, the Kauz-
mann paradox may still be resolved by a thermodynamic
transition to ideal glass or by slowing down of the rate
of entropy decrease, which is realized by the presence of
thermally activated processes, or the presence of defects
until T = 0K.

5.11 Relationship of the strength of frustration against
crystallization to glass-forming ability and fragility and
its link to the phase diagram

Below we consider several model systems and material
groups, focusing on the relation of the degree of frus-
tration against crystallization to glass-forming ability and
fragility. The systems we consider are a) hard-sphere-like
systems, b) polymeric glasses, c) 2D spin liquids, d) water-
type liquids, e) eutectic mixtures, f) chalcogenide glasses,
and g) metallic glass formers. Cases a) and b) suffer from
both competing orderings and random disorder effects. In
case a), bond orientational order is a consequence of con-
straint due to dense packing of hard spheres. Cases c)-f),
on the other hand, suffer from competing bond orderings.
In case c), for example, bond orientational ordering is a
consequence of anisotropic interactions. In this sense, this
model may be regarded as a model mimicking covalent
bonding for oxides and chalcogenides or hydrogen bond-
ing for molecular liquids and also the basis for cases d)-g).
Case g) is an example suffering from both random disor-
der effects (multi-component effects) and competing bond
orientational orderings (icosahedral ordering).

Each material group (colloidal glasses, organic liquids,
polymeric glasses, oxide glasses, chalcogenide glasses, or
metallic glasses) has its own language and concept on its
glass transition. By comparing these different cases, we

aim at providing a general physical picture on the link
between the thermodynamic phase behaviour and the na-
ture of glass transition such as glass-forming ability and
fragility, which may be applicable to any glass-forming sys-
tems in a universal manner. Note, however, that as men-
tioned below, the fragility in the following discussion does
not include the energetic factor, which may cause inconsis-
tency with experimental results. Furthermore, in reality,
our argument might be too simplistic and miss other im-
portant factors controlling the glass-forming ability and
fragility (see, e.g., ref. [413]).

5.11.1 The factors controlling the glass-forming ability

Below we focus on the effects of the degree of frustration
against crystallization on the glass-forming ability. How-
ever, we should mention that the ease of crystallization is
determined by the kinetic factor and the thermodynamic
factors controlling the barrier for crystal nucleation, which
are the liquid-crystal interfacial tension and the difference
in the chemical potential between the liquid and crystal.
In the following discussion, we do not consider these fac-
tors, which are key to the classical nucleation theory, and
just focus on the frustration effects. Thus, we definitely
need to take into account these factors to make a better
prediction (see refs. [32,84] on this issue).

5.11.2 The activation energy in an equilibrium liquid and
the fragility of liquid

Before considering the glass transition behaviour of realis-
tic glass formers, we need to mention an important factor
controlling the fragility of liquid. So far we have empha-
sized that the strength of frustration against crystalliza-
tion is a key factor controlling the fragility of a liquid.
However, there is another important factor, which can
practically be more important than the degree of frus-
tration. It is the ratio between the energetic contribution
and the contribution of the configurational entropy to the
structural relaxation. This can be clearly seen in a few ex-
amples. One is the change of the fragility of colloidal sys-
tems as a function of the softness of the interaction [414].
The softer the interaction potential is, the stronger the
liquid is. This can be viewed as the control of the ratio of
the energetic (elastic) contribution to the configurational
(centre of mass) entropy. Another example is our 2D spin
liquid system [24], where we control the strength of the
anisotropic part of the potential relative to the isotropic
part. These examples clearly support the above-mentioned
effect of the Arrhenius energy on the fragility.

Here we explain why it is so. The glass transition point
Tg is defined by a temperature (or pressure or density), at
which the structural relaxation time τα reaches the time
scale of observation (in a typical experiment of molecu-
lar or atomic liquids it is the order of 100 s, whereas in
colloidal experiments it is the order of 103–104 s [415]). If
a normal liquid has a high activation energy Ea, the sig-
nificant part of the slow dynamics comes from a simple
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activation process without cooperativity. As in the case of
water dynamics (see sect. 3.9), structural relaxation must
involve two processes: A simple energetic activation pro-
cess and a process of cooperative motion linked to MRCO.
Thus the total structural relaxation process should have
an energy barrier, which is the sum of these processes. We
proposed the following empirical function to incorporate
the two factors [17,243]:

τα = τ0 exp(βEa + f(T )D(ξ/ξ0)d/2), (70)

Here f(T ) is introduced to ensure a smooth crossover from
the activated regime to the critical-like regime, although
there is no firm basis for it. For simplicity, we assume the
following form for f(T ): f(T ) = 1/(exp(κ(T − Tx) + 1)),
where κ is a positive constant that controls the sharpness
of the crossover of f(T ) from 0 to 1 upon cooling and Tx

is the crossover temperature, where the criticality disap-
pears. Note that D = βΔa and we expect that Δa

∼= Ea

(see the following section). In the above, we may also use
ξ = ξ0((T−T0)/T )−2/d instead of ξ = ξ0((T−T0)/T0)−2/d

(see sect. 5.3.3). With this form of ξ, at a high tempera-
ture limit the liquid dynamics can smoothly change to a
simple activation process.

The τα at Tg has a higher fraction of the simple acti-
vation process for a liquid with a higher activation energy
Ea. This leads to the more Arrhenius-like behaviour for a
liquid having a larger ratio of the energetic contribution
to the configurational entropy contribution in the Angell
plot, where the temperature is scaled by Tg.

Thus, we may say that a strong liquid is a liquid which
exhibits very slow dynamics due to its large activation en-
ergy before significant cooperativity associated with the
growing length comes into play. In other words, for some
cases this classification may be just a consequence of the
definition of Tg and the resulting scaling used in the An-
gell plot. If we make a plot for τα/(τ0 exp(βEa)), we can
extract only the cooperative part. However, since the dis-
tance between Tg and T0 should be large for a strong liq-
uid, we cannot access the temperature range where a sig-
nificant slowing down due to cooperativity takes place for
a strong liquid. In this sense, the size of ξ at Tg may also
be a good measure of the fragility of a liquid, although this
quantity is not easy to access experimentally: The smaller
ξ(Tg) is, the stronger a liquid is.

Although Ea can be a dominant factor determining the
fragility of a real fluid, it is non-universal. Thus, hereafter,
we do not consider this factor and concentrate only on the
cooperativity associated with growing motional correla-
tion. So in the following discussion on the fragility of real-
istic glass-forming liquids, please note that this energetic
factor is neglected, although this might lead to incorrect
predictions. If there is a relation of Ea

∼= Δa = DkBT (see
sect. 5.3.9 and below), it might be OK to neglect it.

5.11.3 A possible link between Ea and Δa

The activation energy Ea at a high temperature region
is related to the energy scale of interparticle interactions.

Fig. 43. (Colour on-line) A state diagram for 2D polydisperse
hard-sphere-like systems. Here φ is the volume fraction of col-
loidal particles and Δ is the degree of polydispersity, which can
be regarded as the strength of frustration against crystalliza-
tion. This figure is reproduced from fig. 1 of ref. [271].

On the other hand, Δa is also the fundamental micro-
scopic energy scale of a system, which controls the energy
scale of frustration and thus the strength of the growing
activation barrier, as discussed in sect. 5.3.9. This sug-
gests a positive correlation between Ea and Δa. This is
consistent with the correlation between the strength of
the anisotropic potential Δ and the strong nature of a liq-
uid, or the value of the fragility index D, for 2DSL [24,33]
as well as the widely known positive correlation between
the high temperature activation energy Ea, or the strong
nature of the directional bonding, and D.

5.11.4 A case of hard-sphere-like systems: Geometrical
frustration and/or random disorder effects on crystal-like
bond orientational ordering

A state diagram for 2D polydisperse hard disks is shown
in fig. 43. For a monodisperse case (the polydispersity
Δ = 0%), there are two sequential transitions: bond
orientational ordering followed by translational ordering.
Above Δ ≥ 9% (the coloured region in fig. 43), a system
starts to form glass without crystallization even for slow
cooling. This shows the increase of glass-forming ability
with an increase in Δ. In the glass-forming region, the
fragility monotonically decreases with an increase in Δ.

For a 2D system, the only source of frustration against
crystallization is polydispersity Δ. This is because hexatic
order is the unique bond order parameter for a particle
having 6 nearest neighbours and this order does not suffer
from any frustration upon its growth.

For a 3D polydisperse system, on the other hand, there
are at least two origins of frustration against crystalliza-
tion: One is local icosahedral ordering tendency and the
other is random disorder effects originating from the poly-
dispersity of particles. The importance of the former can
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Fig. 44. (Colour on-line) Bond order mobility. (a) Normalised
mobility in the (w6, Q6)-plane for a deeply supercooled sam-
ple of a colloidal suspension (φ = 0.575 ± 0.03). Here Q6 is
not q6 and coarse-grained Q6 (see sect. 2.2). The colour scale
is saturated at 1.5 times the bulk mean square displacement.
(b), (c) Normalised mobility for icosahedral and crystalline or-
der parameters respectively at volume fraction 0.535 (squares),
0.555 (triangles) and 0.575 (diamonds), all ±0.03. Bulk mean
square displacement is scaled to be at 1 (horizontal line). Per-
fect structures are on the edge of each plot. The lines are a
guide for the eye, stressing the collapse of the w6-mobility at
all volume fractions in (b) and the absence of such collapse in
(c). The collapse in (b) is a consequence of the non-extendable
nature of icosahedral-like structures. The scattering at low
volume fractions is due to poor averaging of rare structures.
Straight lines in (a)-(c) corresponds to the important thresh-
olds: Q∗

6, w∗
6 and wdod

6 . For Q6 > Q∗
6 and w6 < w∗

6 , we regard
that particles have crystal-like bond orientational order and
icosahedral-like order, respectively. wdod

6 is a measure for do-
decahedral order. Examples of crystal-like cluster and distorted
icosahedron at the respective threshold values are shown in (d)
and (e), respectively. This figure is reproduced from fig. 3 of
ref. [13].

be clearly seen in fig. 38(c). Note that for 3D hard spheres
a particle having 12 nearest neighbours can have three
types of bond orientational order (fcc, hcp, and ico) (see
fig. 36). Among them, local icosahedral ordering is not
a major cause of slow dynamics due to its localized na-
ture and the dominant one is crystal-like (fcc-like) bond
orientational order. This can be seen in fig. 44 [13]. This
tells us that only spatially extendable structural order is
responsible for slow dynamics. So the scenario that icosa-
hedral ordering is a major and unique underlying order-
ing behind vitrification may not be valid at least for a
hard-sphere system. Nevertheless, local icosahedral struc-
tures are formed, as shown in fig. 38(c), and their num-
ber density increases with an increase in φ, which leads
to stronger frustration effects on crystal-like ordering [13,
38]. In this sense, even a monodisperse hard-sphere sys-

tem is not free from frustration effects on crystallization
and suffers from self-generated internal frustration con-
trolled by entropy [10,38]. This situation might be similar
to metallic glass formers [35,84], although the tendency
of icosahedral ordering may be more pronounced for these
systems due to the chemical nature of bonding and the
matching of atomic sizes.

If the degree of the polydispersity becomes so large,
even the bond orientational order parameter, which is
valid for weakly polydisperse systems, cannot be applied
any more for characterizing locally favoured structures in
both 2D and 3D systems. The increase in the polydisper-
sity Δ leads to an increase in fluctuations of the number of
nearest neighbour particles, i.e., fluctuations of local bond
orientational order parameters. For large Δ, a one-to-one
correspondence between high bond orientational order and
slow mobility no longer holds [271]. High-order regions are
always slow, but slow regions do not necessarily have high
order.

We confirmed that also in 3D systems the increase in
the degree of polydispersity Δ leads to the increase in the
glass-forming ability and the decrease in the fragility [10].
In both 2D and 3D systems, the growth of the correlation
length of bond orientational order is suppressed by the
increase in Δ for the same range of φ [269,37].

A binary hard-sphere mixture with the size ratio
around 1.4 corresponds to a situation suffering from strong
random disorder effects [272,416]. Even in such a case,
geometrical packing of particles under volume constraint
leads to some local structural features characterized by
low configurational entropy to gain the correlational en-
tropy [10]. This tendency that a system tends to have
low local free-energy structures, which maximize the total
entropy of a system, may be one of the most fundamen-
tal features of a “thermal” hard-sphere-like system whose
free energy is controlled by the entropy alone, irrespec-
tive of the degree of polydispersity. For binary mixtures of
soft spheres, the composition and size dependence of glass-
forming ability was studied by Mountain and Thirumalai
and the theoretical prediction of Egami and Waseda [417]
was confirmed. Recently, it was also shown by Hamanaka
and Onuki [416] that the glass-forming ability can be
controlled by the particle ratio and becomes maximum
around 1.4.

5.11.5 Random disorder effects in polymeric glass-forming
systems

In polymeric glass formers, energetic frustration on crys-
tallization plays an important role as in any other systems.
So bond orientational ordering may also play an impor-
tant role in slow dynamics of glass-forming polymer sys-
tems. Such an example has recently been demonstrated
by numerical simulations [418]. In addition to that, ends
of a polymer chain causes disorder effects on crystalliza-
tion. However, the most significant factor controlling the
ease of vitrification is so-called stereoregularity of poly-
mers, which is characterized by tacticity. Tacticity is the
relative stereochemistry of adjacent chiral centres within
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Fig. 45. (Colour on-line) Schematic phase (or state) diagrams
for polymer. Here the x-axis is the degree of stereoregularity,
which increases towards the left-hand side. A polymer with
perfect stereoregularity (isotactic or syndiotactic) should crys-
tallizes into a crystal. However, with an increase in random
disorder, or with a decrease in stereoregularity, a polymer be-
comes difficult to be crystallized, which is the case of so-called
atactic polymers. So the basic behaviour is very similar to col-
loidal systems described above. The area painted in yellow is
a glass-forming region. The solid curve represent a melting-
point curves. The same behaviour should also be observed for
random copolymerization. In this case, the x-axis should be re-
placed by the degree of random copolymerization in the above
figure.

a macromolecule. The regularity of the macromolecular
structure influences the degree to which it has rigid crys-
talline long range order or flexible amorphous disorder. A
tactic polymer is a macromolecule in which essentially all
the configurational units are identical, whereas an atac-
tic polymer is a macromolecule with a random sequence.
Thus, atactic polymers suffer from strong random disorder
effects, which prevent crystallization.

This situation is similar to that of polydisperse col-
loidal systems. However, since the disorder effects are
quenched in the chemical structure, atactic polymers
never crystallize unlike polydisperse colloids, which can
crystallize after fractionation or phase separation (or, a
sort of annealing). We speculate a state diagram of a poly-
mer as a function of the degree of tacticity (see fig. 45).
It is highly desirable to make such a phase diagram ex-
perimentally or numerically. The basic structure of the
phase diagram should be similar to that of polydisperse
colloids. We predict that the increase in disorder increases
the glass-forming ability and makes a polymeric liquid less
fragile, which should be checked in the future. We note
that for this case the Arrhenius-type activation energy af-
fecting the fragility may be safely neglected since the basic
physical interactions may not be strongly affected by the
tacticity.

It is empirically known that bigger side groups, chain
complexity, branching, and random copolymerization re-
duce the ability of a polymer to crystallize. All these effects
can be interpreted as random disorder effects on crystal-
lization. So we also expect that an increase in these ef-
fects increases the glass-forming ability and makes a liquid
stronger.

Fig. 46. (Colour on-line) Phase diagram of 2D spin liquid in
the T -Δ plane. Here Δ is a measure of the strength of frus-
tration against crystallization, or the strength favouring a lo-
cally favoured structure of fivefold symmetry. Energetic frus-
tration due to symmetric mismatch in the interacting potential
is caused in this system. The basic structure of the phase dia-
gram is quite similar to that of water (see fig. 4). For small Δ, or
weak frustration, the glass-forming ability is very low, whereas
with an increase in the frustration strength Δ the glass-forming
ability is increased and the fragility is decreased. This basic
trend is also very much consistent with the behaviour of wa-
ter under pressure and water/salt mixtures [421]. This figure
is reproduced from fig. 1 of ref. [24].

5.11.6 A case of 2D spin liquids: competing bond
orientational orderings

Next we consider a case of 2D spin liquids (see fig. 46) [24,
33]. In this model, we put an anisotropic potential which
forces particles having spins to favour the formation
of pentagons (see fig. 1). The statistical mechanics ap-
proaches to both thermodynamics and dynamics have
been developed by Procaccia and his coworker for this
model [419,420]. The ground state crystal has antifer-
romagnetic order on an uniaxially elongated hexagonal
lattice. This crystal has a density higher than a liq-
uid. In a supercooled liquid state of this model system,
we found medium-range antiferromagnetic bond orienta-
tional order (see fig. 3), whose size ξ grows almost as
ξ = ξ0((T − T0)/T0)−1 when approaching T0. We confirm
that antiferromagnetic bond orientational ordering is al-
most completely decoupled with density ordering: Density
change is not accompanied by the crystal-like bond orien-
tational ordering and thus the density of a supercooled
liquid is uniform in space after a certain level of coarse-
graining, irrespective of the degree of antiferromagnetic
order. Here it should be mentioned that pentagons have a
larger specific volume. There are strong competing order-
ings between antiferromagnetic and five-fold pentagonal
ordering (see fig. 46).

In this system, the strength of the frustration, which
we express by Δ, controls the glass-forming ability, fra-
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Fig. 47. (Colour on-line) Liquid states of 2DSL with Δ = 0.8
at P = 0.15 and T = 0.27 (Tg/T = 0.78) (a) and at P = 3.0
and T = 0.29 (Tg/T = 0.82) (b). With an increase in P , the
number density of locally favoured structures (pentagon) de-
creases since Δv > 0. This leads to the decrease in frustration,
which causes enhancement of medium-range crystal-like bond
orientational (antiferromagnetic) order.

gility, and criticality [24,33]. The state diagram is shown
in fig. 46. For small Δ, a system easily crystallizes into the
plastic crystal. For large Δ, where the melting point of the
antiferromagnetic crystal is higher than that of the plastic
crystal, a system can be vitrified rather easily. Thus, the
increase in Δ leads to the increase in the glass-forming
ability. We also found that the increase in Δ decreases
the fragility. This may be largely due to the increase in
the activation energy Ea dominating the high-temperature
Arrhenius regime. Applying pressure leads to the decrease
in pentagons (see eq. (15) and note that Δv > 0 for a
pentagon), as shown in fig. 47. This leads to the increase
in the fragility [33] (see fig. 48). Since pressure does not
alter the energy itself, this clearly indicates that the degree
of frustration is a controlling factor of the fragility.

It is interesting that the number density of pentagons
has a distinct correlation with the growth of crystal-like
bond orientational order and the fragility, indicating that
pentagons disturb the growth of the correlation length
of crystal-like order. These behaviours are essentially the
same as that in the above case of polydisperse colloids and
support our scenario.

Finally, we note that in this system crystal nucleation
takes place preferentially in a region of high bond orienta-
tional order for Δ = 0.6, although it is a very rare event.
Once a crystal nucleus is formed, the density in the nucleus
increases and becomes higher than the surrounding liquid.
We stress that before nucleation starts, there are few den-
sity fluctuations associated with antiferromagnetic bond
orientational ordering. This suggests that translational or-
dering, or crystal nucleation, is initiated selectively inside
regions of high crystalline bond orientational order (see
also sect. 6), because of low interfacial energy.

5.11.7 A case of water and water-type atomic liquids

The V-shaped phase diagram schematically shown in
fig. 49 (see also fig. 4) is common to water-type liquids
such as water, Si, Ge, Sb, Bi, and Ga [22]. At low pres-
sure, a system crystallizes into S crystal, which is favoured
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Fig. 48. (Colour on-line) The pressure dependence of the tem-
perature dependence of the structural relaxation time τα. We
can clearly see that the fragility decreases with an increase in
P . This figure is reproduced from fig. 1 of ref. [33].
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Fig. 49. (Colour on-line) Schematic phase (or state) diagrams
for water-type liquids. S-crystal is a crystal favoured by tetra-
hedral bond orientational ordering (note that tetrahedral sym-
metry is consistent with diamond-like order), whereas ρ-crystal
is a crystal favoured by density ordering. The system volume
expands upon crystallization of a liquid to S-crystal, whereas
shrinks upon its crystallization to ρ-crystal. The area painted
in yellow is a glass-forming region. Solid curves represent phase
transition curves such as melting-point curves.

by bond orientational (tetrahedral) ordering. It may be
worth noting that below Px there is almost no frustra-
tion since tetrahedral locally favoured structures having a
lower energy than normal liquid structures are compatible
to S-crystal. Reflecting the open structure of tetrahedral
order, the system volume expands upon crystallization of
a liquid to S-crystal, which leads to the negative slope
of the melting point of S-crystal in the T -P phase dia-
gram. Under high pressures, a crystal into which a liq-
uid crystallizes generally tends to have a more compact,
denser structure. Thus, pressure destabilizes S-crystal and
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instead stabilizes ρ-crystal. Accordingly, the equilibrium
crystal switches from S-crystal to ρ-crystal with increas-
ing pressure at the crossover pressure Px, as shown in
fig. 49. In other words, the primary order parameter re-
sponsible for crystallization into the equilibrium crystal
switches from the bond order parameter S to the density
order parameter ρ there, or more precisely, bond order
parameters linked to ρ-crystal.

Above Px, thus, the melting point of ρ crystal be-
comes higher than that of S-crystal. In this situation, we
expect that locally favoured structures linked to tetra-
hedral ordering work as a source of frustration against
crystallization to ρ-crystal because of the mismatch be-
tween the symmetries and thus helps vitrification. We note
that the structure of the first shell is not enough to de-
scribe the locally favoured structure and that of the second
shell may be necessary to specify it. Thus, water should
tend to behave as an ordinary glass-forming liquid at very
high pressures, which is consistent with the experimen-
tal indication [114,422]. This tendency is difficult to ex-
plain in terms of the other existing theories of liquid-glass
transition.

We note that at a low pressure, local structural order-
ing simply helps crystallization to S-crystal since the sym-
metry of locally favoured structures is basically consistent
with that of S-crystal. Since an open tetrahedral structure
has a specific volume larger than a normal-liquid struc-
ture, the increase in the pressure decreases the number
density of locally favoured structures, i.e., S̄ (see eq. (15)),
which should lead to the decrease in the strength of frus-
tration against crystallization to ρ crystal. The situation
is thus very similar to the case of 2D spin liquids under
pressure discussed above. Our scenario tells us that the
glass-forming ability and the fragility are positively cor-
related with an increase and a decrease in frustration, re-
spectively. As shown in fig. 49, we see high glass-forming
ability and low fragility near the minimum of a melting
curve [24,33]. Thus our physical scenario predicts a high
glass-forming ability around the minimum of a melting
curve, a triple point [22,27]. Furthermore, in the glass-
forming region, the glass-forming ability should decrease
and the fragility should increase with an increase in P .

We confirm this scenario experimentally by using a
water/LiCl mixture [421,424]. In this mixture, the ad-
dition of the salt leads to the decrease in local tetrahe-
dral order of water and the increase in hydrated struc-
tures. Thus, the salt basically acts as the breaker of locally
favoured tetrahedral structures as pressure does [425]. Fig-
ure 50(a) shows the phase diagram of this mixture as a
function of the salt concentration φ, which has a V-shape
as the T -P phase diagram of pure water. As can be seen
in figs. 50(a) and (b), the glass-forming ability becomes
maximum slightly above φx, where the melting point has
a minimum. Figure 51(a) shows how the fragility index D
decreases with an increase in φ in the glass-forming region.
Figure 51(b) shows the φ-dependences of the viscosity and
the thermodynamic driving force of crystallization which
does not include the kinetic factor. The results clearly in-
dicate that the eutectic-like deep minimum of the melting
point and the resulting slow dynamics upon crystalliza-
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tion there alone cannot explain the enhancement of the
glass-forming ability, suggesting the importance of a ther-
modynamic factor (energetic frustration) in glass transi-
tion. Furthermore, this conclusion is also supported by the
large discrepancy between φx (∼ 12mol%) where the vis-
cosity at Tm has a maximum and φ (∼ 20mol%) for the
maximum glass-forming ability. This discrepancy may be
a consequence of the fact that local tetrahedral (S) order-
ing has random disorder effects only for ρ-crystal and not
for S-crystal.

Consistent with our prediction, Molinero et al. [426]
succeeded in vitrifying a monoatomic Si-like liquid by
weakening the tetrahedrality in the Stillinger-Weber po-
tential in their molecular dynamics simulations: The glass-
forming ability increases around the triple point between
diamond cubic (dc) crystal, body centred cubic (bcc) crys-
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tal, and liquid. Furthermore, Bhat et al. [427] succeeded in
experimentally obtaining a monoatomic “metallic” glass
of Ge at a pressure near the triple point (see also refs. [428,
429]).

Our scenario provides a possibility to predict the glass-
forming ability and fragility from the shape of the equi-
librium phase diagram. The key is the relationship be-
tween global minimization of the free energy towards crys-
tal and local minimization towards locally favoured struc-
tures. Depending upon the consistency of these two sym-
metries, locally favoured structures can be either a pro-
moter of crystallization or its preventer. A physical factor
making water so unusual among “molecular” liquids is the
V-shaped P -T phase diagram (see fig. 4): Water may be
only such a molecule. Instead of changing pressure, we can
add additives to a liquid to modify the number density of
locally favoured structures, which opens up a new possi-
bility to control the glass-forming ability and the fragility
of a liquid in a systematic way, as shown next.

5.11.8 A case of eutectic mixtures

The same scenario may also be applied to various mate-
rials having a V-shaped phase diagram of a mixture as
a function of the composition, e.g., metallic systems hav-
ing a deep eutectic point (see fig. 53). Instead of changing
pressure, for example, we can add additives to a liquid
to modify the number density of locally favoured struc-
tures, which allows us to control the glass-forming ability
and the fragility of a liquid in a systematic way. Typi-
cal examples are salt for water [430,431,423], Na2O for
SiO2 [430], and Au for Si [432]. The similar behaviour has
also been reported for Ca(NO3)2-KNO3 systems [433].

It has been known empirically that the glass-forming
ability of a multi-component metallic glass former in-
creases while approaching a deep eutectic point. This was
explained by the fact that the viscosity of an equilib-
rium liquid just above the melting point is higher sim-
ply because the melting point is minimum at the eutectic
point. As shown above, this kinetic argument may not
be enough [84]. We propose that there is another impor-
tant factor: Near an eutectic point the two types of local
structures linked to the two types of crystals compete,
leading to stronger energetic frustration against crystal-
lization, which helps glass formation [35,421,424]. Such
behaviour was indeed observed by simulations [142,432].
In other words, the thermodynamic factors, more specif-
ically, energetic and geometrical frustration, also play a
crucial role in the enhancement of the glass-forming abil-
ity near an eutectic point in addition to the kinetic factors.
We argue that a V-shaped phase diagram is in general a
manifestation of underlying competing orderings.

As discussed in the case of water-salt mixtures (see
above and refs. [421,424]), the best glass-forming and low-
est fragility region is not necessarily located at the eutec-
tic point, but is a bit shifted from it. Such behaviour has
recently been confirmed for several systems [434].

Here we note some cases which are not consistent with
our prediction. Gong et al. [435] recently reported that in

ZnCl2-AlCl3 and glycerol-water mixtures, there is no cor-
relation between the fragility minimum and the eutectic
point. The composition of the minimum fragility and the
best glass-forming ability is located near pure ZnCl2 and
glycerol, respectively. We speculate that this is because
these mixtures are a mixture of good and poor glass for-
mers and thus mixing a poor glass former simply leads
to the decrease of frustration effects on crystallization,
which already exists in the pure substance before mixing
the poor glass former. This may result in the monotonic
decrease and increase in the glass-forming ability and the
fragility, respectively.

Our scenario may also apply to strongly correlated
electronic systems (see, e.g., fig. 2 of [436]), where glassy
behaviour is also observed near the boundary between two
competing phases. Our scenario may shed new light on a
general mechanism of glassy behaviour itself on a wider
perspective.

5.11.9 A case of chalcogenide glasses

A chalcogenide glass is defined as a glass containing one
or more chalcogenide elements, which belong to Group 16
in the periodic table, e.g., sulphur, selenium or tellurium.
In these glasses, elements are covalently bonded and often
regarded as network solids. Thus, chalcogenide liquids are
typical network-forming liquids and categorized to strong
glass formers. For example, sulphur based systems such as
As-S and Ge-S easily form glasses in wide concentration
regions. Semiconducting properties of chalcogenide glasses
provide many applications. Unlike the classical chalco-
genide glasses, modern ones such as GeSbTe, widely used
in rewritable optical disks, are fragile glass-formers, which
is useful for quick crystallization [437–439]. The relation-
ship between vitrification and crystallization is thus a key
to phase change materials. A recent study suggested a
similarity between amorphous and crystalline structures
and pointed out its possible relevance to rapid crystal-
lization [440]. We also point out that the correlation be-
tween the large fragility and the ability of rapid crystal-
lization. It was also reported that near Tg there is evidence
for decoupling of the crystal growth kinetics from viscous
flow [441], matching the behaviour expected for a fragile
liquid [280]. These facts look consistent with our scenario
(see also sect. 6).

The glass-forming ability of chalcogenide systems such
as GexSe(1−x) and AsxSe(1−x) has been well explained by
the so-called constraint theory, or the concept of mechani-
cal rigidity [442–447]. The concept of mechanical rigidity is
expressed by using the average coordination number 〈r〉 in
covalent bonded inorganic glasses. This model can explain
peculiar behaviours observed near 〈r〉 = 2.4, such as the
maximum glass-forming ability, the minimum of fragility,
the maximum of the Prigogine-Defey ratio, the maximum
of the pronounced first sharp diffraction peak, and boson
peak, in a coherent manner. Near 〈r〉 = 2.4, the number
of constraints is almost the same as the number of de-
grees of freedom and a system is rigid but unstressed. This
region is called “a self-organized or intermediate state”.
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Fig. 52. (Colour on-line) Schematic diagram showing the re-
lationship between the fragility parameter m and the mean co-
ordination number 〈r〉. Near 〈r〉 = 2.4, there is a region called
“intermediate state”, where glass-forming liquids are strongest
and have high glass-forming ability. The area painted in yel-
low is a floppy region, whereas the area painted blue is a rigid,
stressed region.

For 〈r〉 < 2.4, a system has floppy modes and is called
“floppy”. For 〈r〉 > 2.4, on the other hand, a system is
over constrained and is called “rigid and stressed”.

We propose that the condition of 〈r〉 ∼ 2.4, which
corresponds to the intermediate phase, is a condition for
maximizing the formation of locally favoured structures
(short-range bond ordering), which is not consistent with
the symmetry of the equilibrium crystal. According to our
two-order-parameter model of liquids, it is this short-range
bond order that produces frustration effects against crys-
tallization (long-range density and bond orientational or-
dering), which leads to vitrification. A typical behaviour
of chalcogenide glasses is schematically shown in fig. 52.

Unlike the case of water, the dependence of the fragility
and the glass-forming ability is rather symmetric about
the mean coordination number 〈r〉. This may be a conse-
quence of the fact that locally favoured structures are not
consistent with crystals formed in both sides of 〈r〉 ∼ 2.4.
In the case of water, on the other hand, locally favoured
tetrahedral-type structures are consistent with S-crystal,
but inconsistent with ρ-crystal. However, since the discus-
sion here is highly speculative, this argument needs to be
confirmed carefully.

5.11.10 A case of metallic glass-forming systems

The glass-forming ability of metallic liquids has been in-
creased dramatically and good glass formers are called
bulk metallic glasses [273,274]: The critical cooling rate
was reduced from 106 K/s to 1K/s or even a slower rate.
Here we consider the glass-forming ability of metallic liq-
uids [35,84], which is related to the topic discussed here.
Metallic glass formers usually possess two types of sources
of frustration: multi-component effects and competing or-
derings. We proposed that local icosahedral chemical or-
dering in a liquid state is directly linked to quasicrystal or-

dering [35]. Crystal-like bond orientational ordering (e.g.,
fcc-like order) competes with local icosahedral ordering
because of the mutual inconsistency of the symmetry, as
in the case of hard spheres [13,11,12]. The importance of
structural features in metallic glass formers has also be
emphasized from different viewpoints [448,449].

The importance of such competing bond orientational
ordering has recently been confirmed both numerically
and experimentally. Jakse and Pasturel [450,451] showed
by ab initio molecular dynamics simulations of Cu-Zr alloy
that a supercooled liquid is characterized by pronounced
icosahedral short-range order, which increases the struc-
tural incompatibility of liquid and amorphous states with
competing crystalline phases. They suggested that good
glass formers have high degree of icosahedral short-range
order already present in the liquid, consistent with our
scenario. The similar conclusion was drawn by Wu et
al. [452]. Lü and Entel also found by numerical simula-
tions that a Ni-Si system has fcc-like MRCO, which is
perturbed by the addition of Si atoms [453]. Liu et al.
found that glass transition can be seen as a process of
increasing MRCO [454]. Fujita et al. [455] also reported
that the atomic-scale heterogeneity caused by chemical
short- and medium-range order plays a key role in stabi-
lizing the liquid phase and in improving the glass-forming
ability of the multi-component alloy. Hwang et al. showed
that hybrid reverse Monte Carlo simulations of the struc-
ture of Zr50Cu45Al5 bulk metallic glass, which incorpo-
rate medium-range structures from fluctuation electron
microscopy data and short-range structure from an em-
bedded atom potential, produce structures with signifi-
cant fractions of icosahedral- and crystal-like atomic clus-
ters [456]. If we focus on competing orderings in metallic
glass formers, the situation looks very similar to those
of 2D spin liquid [24] and hard-sphere liquids in which
“local” icosahedral order also develops [13]. In relation
to this, a simulation study by Shimono and Onodera is
worth mentioning [457]. They reported that in a model
binary mixture the stability of the icosahedral cluster and
the number density of the clusters in supercooled liquids
increases as the atomic size difference between the con-
stituent atoms increases. They also found that an increase
in atomic size difference changes liquid property from frag-
ile into strong. This is quite consistent with our scenario.

In addition to competing bond orderings, there are
also random disorder effects induced by mixing multi-
components. The effects should be similar to those in a
binary mixture [271]. The coexistence of the two types of
frustration effects and specific interactions between dif-
ferent species make the origin of frustration in metallic
liquids a bit complicated.

The above consideration provides a theoretical back-
ground to the Inoue’s three empirical rules for bulk metal-
lic glass formation [458], i.e., 1) multi-component consist-
ing of more than three elements, 2) significant atomic size
mismatches above 12% among the main three elements,
and 3) negative heats of mixing among the main elements.
Rules 1) and 2) can be regarded as random disorder ef-
fects, whereas rule 3) may be regarded as a condition
for the effective formation of locally favoured structures,
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Fig. 53. (Colour on-line) Schematic phase (or state) diagrams
for eutectic mixtures with a quasicrystal formation region. Here
φ is the concentration of one of the two components of a mix-
ture. The area painted in yellow is a glass-forming region. Solid
curves represent phase transition curves such as melting-point
curves.

which are icosahedral structures in many metallic glass
formers.

Next we consider quasicrystal formation in bulk metal-
lic glass formers. We now have much evidence that metast-
able quasicrystals are formed upon annealing of many bulk
metallic glass formers. Our scenario naturally explains
why the composition region of bulk metallic glass formers
is closely related to the region of quasicrystal formation:
S̄ is large in the quasicrystal-forming composition region,
which leads to the high glass formability and the strong
nature of liquids [35,84]. As far as the primary crystalliza-
tion of supercooled melt is the formation of intermetal-
lic crystals, local icosahedral structures act as frustration
and/or random impurity effects on crystallization. This
situation is schematically shown in fig. 53. We expect that
larger S̄ (or, Qico) increases the glass-forming ability and
makes liquid stronger as far as it does not attain a long-
range order, i.e., quasicrystal formation. Formation of lo-
cal icosahedral structures reduces the Gibbs free-energy
difference between the supercooled liquid and the crys-
tal and also increases the interface tension, both of which
make crystallization more difficult [35,84]. This scenario
was recently confirmed by careful experiments [459]. For a
deeper supercooling, on the other hand, local icosahedral
structures of the liquid increases, which is characterized
by large S̄: the liquid becomes more similar to the qua-
sicrystal. Thus, the interface tension between liquid and
quasicrystal becomes smaller, which makes quasicrystal
formation easier there. This may explain quasicrystal for-
mation upon heating of a glass [35,84].

If a tendency of icosahedral chemical ordering is too
strong, however, a stable quasicrystal can be directly
formed instead of intermetallic crystals, or a liquid may
become unstable against quasicrystal formation itself even
upon normal cooling. This again leads to a poor glass
formability. This corresponds to the composition region
of direct quasicrystal formation upon cooling. This is be-
cause icosahedral ordering helps quasicrystal formation

rather than disturbs it. This situation is similar to the
case of water-type liquids, whose glass-forming ability is
very poor at ambient pressure. This may lead to a rather
complicated dependence of the glass-forming ability and
fragility on φ for such a case, as schematically shown in
fig. 53. The validity of this prediction needs to be con-
firmed.

5.12 Origin of the strong nature of glass-forming
liquids: Locally favoured structures or networks

In literature, strong glass formers such as silica and germa-
nia, where covalent bonding plays a crucial role in the liq-
uid structure, and molecular liquids with hydrogen bond-
ing such as water are often called “network-forming liq-
uids”. This apparently looks natural, however, we argue
that network-forming liquids are not appropriate to ex-
press the very nature of these liquids. We prefer to call
them liquids with a strong tendency towards the forma-
tion of locally favoured structures.

The important point is that the directional bonding
is only transient and temporally fluctuating. The struc-
tural relaxation of these liquids is dominated by the bond
lifetime. Even if there exists a percolated network in a sys-
tem, the structural relaxation just takes place at the time
scale of the bond lifetime. Unlike chemical or physical gel,
percolation does not have any significant meaning in the
structural or stress relaxation dynamics [460].

As described above, we argue that the two state picture
is more appropriate to describe the structure and dynam-
ics of liquid. The symmetry of locally favoured structures
is selected by the symmetry of directional interactions or
the competition between attraction and repulsion. For ex-
ample, a system where atoms interact with sp3-type elec-
tronic functions favours the formation of tetrahedral struc-
tures. Hydrogen bonding in water also favours the same
symmetry. For metallic systems, on the other hand, icosa-
hedral structures are favoured. Complex molecules may
form complex local structures to lower the free energy lo-
cally. Locally favoured structures have a longer relaxation
time (lifetime) than normal liquid structures, but they are
also transient. So we argue that a basic spatio-temporal
picture illustrated in fig. 1 is generic to any liquid.

Here we emphasize that the network-forming ability
is not a necessary condition to have a very strong liquid.
We can see an example supporting this in our 2D spin
liquid. As shown in fig. 48, 2D spin liquid of Δ = 0.8 can
be very strong at a low pressure: The structural relaxation
time almost obeys the Arrhenius relation. In this case, the
Arrhenius behaviour largely comes from strong energetic
interactions, which also set the energy scale associated
with frustration against crystallization. However, locally
favoured structures do not form a network (see fig. 47(a))
since the pentagon structures (isolated structures) cannot
form it (please note that all spins in five particles form-
ing a pentagon point outwards). We speculate that the
situations in silica and water may be essentially the same
as the case of 2D spin liquid: tetrahedral structures with
a long lifetime are created and annihilated in the sea of
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Fig. 54. (Colour on-line) Phase diagram and its relation to
glass-forming ability and fragility. Here we consider the case of
Δv > 0. In this case, the number density of locally favoured
structures, i.e., the strength of frustration, decreases with an
increase in P . For Δv < 0, the pressure dependence of the
behaviour is opposite (see text). (a) Liquid like silica, whose the
melting point minimum is located slightly at negative pressure
(Px � 0). (b) Ordinary liquids, whose melting point minimum
is located at a very negative pressure (Px 
 0). Blue areas
represent a positive pressure region.

normal liquid structures, which may also have rather a
high degree of tetrahedrality. The validity of this picture
needs to be confirmed.

5.13 Relation between the location of the melting
point minimum pressure and glass transition behaviour

Here we propose that there is a link between the location
of the melting point minimum pressure Px and glass tran-
sition behaviour such as glass-forming ability and fragility.
We already showed that water-type liquids having a V-
shaped phase diagram share common features, which are
summarized in fig. 49. Some liquids have even more com-
plicated phase diagrams such as those shown in fig. 18(a).
In such cases, more than two types of bond order param-
eters compete and the glass-forming ability and fragility
are expected to show oscillatory behaviour as a function of
pressure, reflecting the oscillation of the strength of frus-
tration. As schematically shown in fig. 54, many liquids

have the T -P phase diagram, where the melting point
monotonically increases with pressure and only exhibits
some kinks, which reflect the presence of polymorphs.

We argue that liquids like silica and germania, which
are categorized as very strong liquids at ambient pres-
sure, may have a melting point minimum pressure Px very
near at ambient pressure (see fig. 54(a)). For example, the
phase diagram of silica was studied by experiments [461,
462] and simulations [463,464], which showed Px is lo-
cated near ambient pressure. The volume of each crys-
talline phase was also measured, including both the T and
P dependences [465]. The phase diagram of GeO2 also has
a similar shape [461]. These liquids have locally favoured
structures of tetrahedral symmetry, which are stabilized
by covalent bonding. Thus, the situation is basically simi-
lar to water-type liquids at a pressure near Px. The phase
diagram of silica and its link to the glass transition be-
haviour looks remarkably similar to those of a water/LiCl
mixture (see fig. 50). However, the glass-forming ability
and fragility of these liquids are, respectively, much higher
and stronger than those of water-type liquids. Although a
reason for this is not so clear at this moment, the trend
itself is consistent with our scenario. The reason may be in
the differences in the strength of bonds (covalent vs. hy-
drogen bonding) and the crystalline structures, which may
result in the large difference in the strength of frustration.
This problem needs to be clarified in the future.

Similarly to the case of water, our model predicts the
decrease of viscosity with an increase in pressure for liq-
uids like silica and germania, reflecting the decrease of
locally favoured tetrahedral structures with an increase
in pressure (since Δv > 0). Our model also predicts the
decrease in the glass-forming ability and the increase in
the fragility, which seem to be consistent with experimen-
tal results for silica [46,466] and germania [467]. Further
careful experimental studies are highly desirable.

For ordinary liquids, we speculate that Px is located at
a very negative pressure or there is no minimum before a
liquid is destabilized to the gas state by lowering pressure
(see fig. 54(b)). In this case, the pressure dependence of
the glass-forming ability and the fragility depends on the
nature of locally favoured structures. If there is only a
weak tendency to form locally favoured structures, there
are very weak P -dependence of the glass-forming ability
and fragility. This is the case for a liquid whose fragility is
high at ambient pressure. In such a case, the volume and
the temperature can be scaled, reflecting strong pressure-
energy correlation (see below).

A liquid which is rather strong at ambient pressure
(e.g., B2O3 and glycerol) is expected to have a rather
strong tendency to form locally favoured structures. For
these liquids, whether the glass-forming ability and the
fragility increase or decrease crucially depends upon the
sign of Δv. For Δv > 0, the increase in pressure de-
creases the number density of locally favoured structures,
which should decrease the glass-forming ability and in-
crease the fragility. Such behaviour is observed for silica.
For Δv < 0, on the other hand, the increase in pressure
increases the number density of locally favoured struc-
tures, which should increase the glass-forming ability and
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decrease the fragility. Such behaviour was reported for
triphenyl phosphite (TPP), where Δv < 0, by Paluch and
his coworkers [468].

The link between the phase diagram and glass transi-
tion behaviour discussed here may be useful for a qualita-
tive level of understanding of the phenomena, but further
studies are necessary for a more quantitative understand-
ing.

5.14 Effects of pressure on glass-forming ability and
fragility for systems without the melting point
minimum pressure in a positive pressure region

We note that applying pressure induces the increase or de-
crease of the number density of locally favoured structures
for Δv < 0 or Δv > 0, respectively. Provided that locally
favoured structures are not consistent with the symme-
try of the equilibrium crystal, this leads to the increase
or decrease of frustration strength against crystallization
for Δv < 0 or Δv > 0, respectively. For the former, the
fragility decreases and the glass-forming ability increases
with an increase in P . For the latter, on the other hand,
the fragility increases and the glass-forming ability de-
creases with an increase in P .

The relationship between these predictions and the
recent findings on the density scaling expression for the
relaxation time τ [469–472] is interesting. For example,
Dyre and his coworkers argued that a description with
a single order parameter applies to a good approximation
whenever thermal equilibrium fluctuations of fundamental
variables like energy and pressure are strongly correlated.
Results from computer simulations showing that this is
the case for a number of simple glass-forming liquids, as
well as a few exceptions. They also conjectured that the
relaxation time should follow the density scaling expres-
sion, τ = F (ρx/T ), if and only if the liquid is strongly
correlating, i.e., is described by a single order parameter
to a good approximation.

5.15 Glass transition and jamming transition

As already stated above, we argue that glass transition
is governed by the same free energy as crystallization.
This automatically means that glass transition, which is a
nonequilibrium but thermal transition, is intrinsically dif-
ferent from jamming transition, which is athermal tran-
sition. The jamming state is defined as an isostatic state
where mechanical forces are balanced. On the other hand,
jamming transition in driven granular matter with con-
tinuous energy input is similar to thermal glass transi-
tion [270], as far as there is no significant (correlated)
energy dissipation [473]. The effects of energy dissipation
has recently been studied in detail [474].

In relation to this, we point out that the hypotheti-
cal ideal glass state is a state where the configurational
entropy is vanished but considerable correlational entropy
still remains. In other words particles do not necessar-
ily freeze there unlike the state of random close packing,
where particle positions are severely constrained geometri-
cally (the nature of the isostatic jamming transition [475]).
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Fig. 55. (Colour on-line) The dependence of φ0 [37] and
φrcp [479] on the polydispersity Δ. This figure is reproduced
from fig. 4 of ref. [12].

The importance of entropic contributions should make the
glass transition of a thermal system distinct from the jam-
ming transition of an (undriven) athermal system. For
polydisperse hard-sphere-like systems, the ideal glass tran-
sition point φ0 deduced from the dynamics is quite differ-
ent from the random close packing volume fraction φRCP

(see fig. 55), although there might still remain a deep link
between them [476]. We should also note that the deter-
mination of φ0 involves a large extrapolation, and thus
there remains some ambiguity on the location of φ0 or
even its presence. This problem is also linked to the nature
of “amorphous” packings of hard spheres [246,477]. Our
study suggests that packings in an amorphous state are
not necessarily a perfectly random state (see ref. [478] on
exotic amorphous order), but possess bond orientational
order for hard spheres as far as the polydispersity is not
so large. We emphasize that bond orientational ordering
in hard spheres is a consequence of dense packing under
thermal fluctuations with the presence of excluded-volume
effects (entropic effects). On the nature of the hypothetical
ideal glass state, see our discussion in sect. 5.3.5.

5.16 Glassy structural order and transient shear
elasticity

When a liquid is cooled below its glass transition point, a
nonzero shear modulus emerges at least on the observation
time scale τo. The origin of the emergence of this rigidity
at the glass transition point is one of the key unsolved
problems. Shear modulus is directly linked to mechanical
stability of materials. Recently this problem was studied
theoretically [480,481].

Here we take a different standpoint that even a glass
does not have nonzero static shear elasticity and the stress
should eventually relaxes to zero if we can wait for a time
longer than the structural relaxation time τα (see fig. 56).
Note that τα � τo for a glassy state. The static shear
stress may emerge at the ideal glass transition point in
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Fig. 56. (Colour on-line) Schematic figure showing the depen-
dence of the shear modulus G′(ω) on the angular frequency
ω. The three curves show G′(ω) for a high-temperature super-
cooled liquid (τα 
 τo), a supercooled liquid near Tg (τα < τo),
and a glass (τα � τo) from left to right. Here τo is the obser-
vation time scale. We note that the ratio τα/τo is the so-called
Deborah number.

this scenario, but this does not have a practical mean-
ing since crystallization should take place before reaching
this ideal glass state (see sect. 5.10). This view is based
on a physical picture that a glass is in a process of age-
ing towards the hypothetical equilibrium liquid (at least
above T0, or more strictly TLML). In the case of crystal,
the static shear elasticity is a consequence of translational
order: the displacement of one particle should accompany
the displacement of an infinite number of particles. In our
picture, the mechanical properties of a glass are charac-
terized by the correlation length of glassy structural order
as well as the amount of defects. Glassy structural order
may be regarded as structures with low fluidity (or, high
solidity) without voids or defects. Although glassy struc-
tural order whose characteristic lengthscale is finite cannot
support “static” shear deformation in a direct manner, it
can help in supporting it transiently. The state without
defects (or, with an infinite correlation length) may ex-
hibit “static” elasticity even without translational order.
This implies that our glassy structural order parameter
(including bond orientational order parameter) should be
anticorrelated with fluidity.

Here we should also consider glassy states prepared by
strongly nonequilibrium processes, such as hyperquenched
glasses and glasses made by densification of crystals. Hy-
perquenched glass may preserve the structure of a high
temperature liquid and thus be very disordered. Thus,
the correlation length of glassy structural order ξ may be
very short. This implies a rather small activation barrier
B ∼ Δa(ξ/ξ0)θ. Thus, to realize τα � τ0, we need a low
temperature, which is a condition to have a solid glassy
state. This consideration also implies that the activation
type relation between ξ and τα may be more appropri-
ate than a power law type relation between them (see
sect. 5.3.4).

5.17 Difference in the roles of bond orientational order
between i) glass transition and ii) water-like anomaly
and liquid-liquid transition

So far we consider the glass transition phenomena and the
phenomena of water-like anomaly and liquid-liquid transi-
tion (LLT) rather separately. However, we also show that

both phenomena are linked to bond orientational ordering
in a liquid state. So we need to consider what is the rela-
tion between them. When we consider bond orientational
ordering for water-like anomaly or LLT, we treat it as a
scalar order parameter and thus it is not coupled to glassy
slow dynamics. Critical phenomena associated with this
ordering is similar to ordinary critical phenomena, where
the dynamics of the order parameter itself slows down re-
flecting the growth of the characteristic length of the order
parameter fluctuations. Modes which contributes to slow
dynamics are restricted to low wave number ones satisfy-
ing k < ξ−1. However, this type of critical slowing down
does not accompany slowing down of motion at a particle
scale: no link to solidity. Here we emphasize that the solid-
ity here is not linked to the elastic strength, but the struc-
tural lifetime. The above situation is the case for liquid-
liquid transition. On the other hand, in glass transition
the medium-range bond orientational order with a tenso-
rial nature, which is a manifestation of voidless packing,
is regarded as long-lived stress-bearing order in the sense
that it can bear shear stress transiently (see above). This
directly leads to the slow dynamics not only at a particle
scale, but also in a mesoscopic scale (see sect. 5.3.2). In
this sense, we speculate that the nature of the bond order
parameter, whether the order parameter is coupled to so-
lidity or not, plays a crucial role in whether it is coupled
to glassy dynamics or not. This leads to a marked differ-
ence from ordinary critical phenomena, where the order
parameter is not coupled to local mobility. We stress that
the coupling is a consequence of frustration effects (see
sect. 5.3.9 and below).

This problem may also be related to the origin of coop-
erativity in S ordering and Q ordering, or the type of the
order parameter coupling, reflecting the nature of the or-
der parameter. In relation to this, we note that structural
or stress relaxation can take place in a time scale shorter
than the lifetime of MRCO, as discussed in sect. 5.3.8.
Note that the lifetime is measured for a wave number
corresponding to the inverse of the characteristic domain
size. More importantly, structural configuration can relax
with fluctuations of the order parameter over the length-
scale of a particle size and stress relaxation takes place
via local reconfiguration of particles from anisotropic to
isotropic one. This does not necessarily mean that such
relaxation takes place microscopically. Coherent motion
of mesoscopic solid-like structures over a particle size is
enough for structural relaxation (see sect. 5.3.8). In rela-
tion to this, Widmer-Cooper et al. [384] showed that more
than half of particle movements that have contributed ir-
reversibly to relaxation belong to strain-like, meaning that
they involved the loss of no more than one of the initial
neighbours [321]. This is markedly different from a simple
cage-based picture, but rather consistent with what we
discussed in sect. 5.6.

In some sense, we may also say that the relation of
bond orientational order parameter between LLT&water
anomaly and glass transition is very similar to the relation
of density order parameter between gas-liquid transition
and crystallization. The lower-temperature transitions are
associated with the breakdown of translational and/or ro-
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tational symmetry for both cases, which is linked to the
tensorial nature of the relevant order parameters.

Unlike positional ordering, however, the nearly second-
order nature of bond orientational ordering under “frus-
tration” may lead to unconventional critical-like be-
haviour in a supercooled liquid (see sect. 5.3.9), although
this needs to be confirmed. This leads to the drastic dif-
ference in dynamics between the two types of orderings.
The ordering of S is governed by a competition between
energy and entropy as in ordinary phase transition and
thus the relevant energy scale is that of entropy which
is kBT . On the other hand, glass transition is controlled
by frustration between two competing orderings and the
activation energy can become huge (∼ Δa(ξ/ξ0)θ) (see
sect. 5.3.9). From this respect, polyamorphic transitions
may be rather complicated since the order parameter gov-
erning liquid-liquid transition may be linked to fluidity as
well. A recent study by Limmer and Chandler [137] on
water might be related to this issue. This remains a topic
for future investigation.

6 Crystallization

Crystallization, more strictly, crystal nucleation in a su-
percooled liquid, is a process in which a new ordered phase
emerges from a disordered state. It is important not only
as a fundamental problem of nonequilibrium statistical
physics, but also as that of materials science [54–57,53].
Crystallization has been basically described by the classi-
cal nucleation theory. However, nature provides intriguing
ways to help crystallization beyond such a simplified pic-
ture. An important point is that the initial and final states
are not necessarily the only players. This idea goes back to
the step rule of Ostwald [482], which was formulated more
than a century ago. He argued that the crystal phase nu-
cleated from a liquid is not necessarily the thermodynam-
ically most stable one, but the one whose free energy is
closest to the liquid phase. Stranski and Totomanow [483],
on the other hand, argued that the phase that will be nu-
cleated should be the one that has the lowest free-energy
barrier. Later Alexander and McTague [70] argued, on the
basis of the Landau theory, that the cubic term of the
Landau free energy favours nucleation of a body-centred
cubic (bcc) phase in the early stage of a weak first-order
phase transition of a simple liquid (see sect. 2.3.1). Since
then there have been a lot of simulation studies on this
problem, but with controversy (see, e.g., [79,484] and the
references therein). Here we show a new scenario of crystal
nucleation which focuses on structural ordering intrinsic
to the supercooled state of liquid.

6.1 Density functional theory of crystallization

First we mention a phenomenological approach based on
the density functional theory beyond classical nucleation
theory (see refs. [485,486] for review), since it is related
to our two-order-parameter model.

Density functional theory treats the solid as an inho-
mogeneous fluid. The starting point for a calculation of

crystal nucleation rates is a Fourier expansion of ρ(r) in
terms of the reciprocal lattice vectors Gi [68]

ρ(r) = ρ�[1 + μs + Σiμi exp(iGi · r)], (71)

where ρ� is the mean-field liquid density and μs is the av-
erage density change on freezing. The parameters μi are
the amplitudes that describe the periodic structure in the
crystal; they are zero in the liquid. The transition is thus
characterized by an infinite set of order parameters μi in-
stead of the single parameter (the average density) char-
acterizing the gas-liquid transition. The saddle point is
found as usual by minimizing the grand canonical poten-
tial functional with respect to ρ(r) with an approximation
that the density can be written as as a sum of Gaussians,
centred at the lattice sites of the crystal.

Oxtoby and his coworkers [487,488] showed that the
classical theory for the free energy of formation of the
critical droplet is found to exceed that obtained in the
density functional calculation. They introduced an order
parameter that continuously distorts a crystal with fcc
symmetry into one with bcc symmetry, to allow for the
possibility that precritical bcc crystallites form which then
transform to critical fcc droplets. The latter had been
found in an earlier simulation of a Lennard-Jones sys-
tem [79,484]. Their calculation of the free-energy func-
tional showed a metastable bcc state close to the stable fcc
phase. This metastable bcc phase induces a saddle point
which serves as the lowest free-energy barrier between the
liquid and crystal, with the minimum free-energy interface
passing close to this saddle point. This has significant con-
sequences for nucleation, in that a small critical droplet
is largely of bcc structure at the centre and evolves into
the stable fcc structure as it grows. We note that the sim-
ilar framework was also applied to crystallization of hard
spheres [489].

The above approach has some similarity to ours in the
sense that both consider the presence of at least two or-
der parameters (density and a structural order parameter
which has a link to the crystal structure). At the same
time, there is a crucial difference: their order parameter is
linked to translational order, whereas ours is linked not to
it but to bond orientational order. For example, a super-
cooled liquid locally has high bond orientational order,
but no translational order (μi = 0), as we have shown
in sect. 5. In our scenario, the liquid state prior to crys-
tal nucleation is “not” homogeneous and quite heteroge-
neous. In the density functional theory, on the other hand,
it is treated as completely homogeneous: There the liquid
state is simply characterized by a constant density ρ� (see
eq. (71)). Thus, we emphasize that despite the apparent
similarity, the physical picture is essentially different be-
tween the two scenarios.

6.2 A supercooled liquid: A metastable state prepared
for crystallization

As we saw in the preceding section, a metastable super-
cooled liquid from which crystal nuclei emerge is not ho-
mogeneous, but already possesses significant crystal-like
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bond orientational order. This forces us to change the
basic physical picture of crystallization. Recently exper-
iments [490–492] and simulations [36,37,493–495] have
started to point out deviations from the classical picture of
crystallization, suggesting that this process is more com-
plex than the “one-step discontinuous” classical nucleation
scenario.

Recently it was suggested that crystal nuclei are not
formed spontaneously in one step from random fluctua-
tions, but rather in a two step through preordered pre-
cursors of high density with structural order [496,494].
This two-step crystal nucleation scenario now becomes
very popular [490–493,496,494,495]. However, Russo and
Tanaka [39,38] recently showed that the process of crys-
tal nucleation does not consist of discrete steps but is
rather continuous at the microscopic level: Crystal nu-
cleation is a consequence of the continuous increase in
the coherency of crystal-like bond orientational order in
a high-density region, which is already developed spon-
taneously in a supercooled liquid prior to crystal nucle-
ation. The positional ordering follows the enhancement of
the coherency of crystal-like bond orientational order. In
other words, the latter is necessary for the development
of the former. The difference between these two scenarios
are schematically drawn in fig. 57 (see also below). On the
basis of our finding that a metastable liquid is structurally
inhomogeneous, thus, we can say that one of the weakest
points of the classical nucleation theory and the density
functional theory is the assumption that a supercooled
liquid is in a homogeneous disordered state [36].

For example, we found that a supercooled state of a
hard-sphere-like liquid does not have a homogeneous ran-
dom structure, contrary to the common belief, but has
transient crystal-like bond orientational order together
with icosahedral order [10,37,36,13] (see fig. 38). This is
also the case of 2D spin liquid (see fig. 3). The spatial
correlation length ξQ and the amplitude of fluctuations
of the bond orientational order parameter “at least ap-
parently” diverge towards the ideal glass transition vol-
ume fraction φ0, where the structural relaxation time
τα hypothetically diverges following the VFT relation:
τα ∝ exp(Dφ/(φ0 − φ)), where D is the fragility in-
dex. We showed [37,36] that crystal-like bond orienta-
tional ordering accompanies little density change on av-
erage and should not be regarded as prenuclei or small
crystallites [37,36,13,39,38]. Thus, we conclude that bond
orientational ordering is an intrinsic structural feature of
a supercooled state, which is also confirmed from the pres-
ence of such ordering even in a system of polydispersity
Δ > 7% for 3D [10,37], which never crystallizes in a sim-
ulation period.

Here we explain our finding, which strongly suggests
the importance of bond orientational ordering in crys-
tallization [37,36,38,39]. We stress that this particular
crystal-like bond orientational order is linked to the ro-
tational symmetry that will be broken upon crystalliza-
tion. A crystal nucleus is formed by thermal fluctuations
selectively inside regions of high crystal-like bond orienta-
tional order. The reason is as follows. Nucleation in a re-
gion of high crystal-like order leads to a small free-energy

Fig. 57. (Colour on-line) Top: a process of crystal nucleation
in a supercooled liquid. Metastable liquid (top left): In a super-
cooled liquid state before crystal nucleation, a system attains
only bond orientational ordering, which has a finite lifetime.
Crystal nucleation (top right): crystal nucleation preferentially
occurs in a region of high bond orientational order (BOO) by
continuously increasing the spatial coherency of BOO and po-
sitional order (PO). Bottom: the microscopic kinetic pathway
of crystal nucleation in a two-order-parameter plane. For sim-
plicity, we consider only one type of bond orientational order
Q. In reality, this process may occur in a multi-dimensional
space. The two-step and the continuous scenarios of crystal
nucleation are compared. According to the two-step crystal-
lization scenario [490–493,496,494,495], the formation of pre-
cursors accompanies the density change from a liquid state and
thus leads to a path along the ρ axis (see orange dashed line).
Such behaviour was not observed in our simulations at least in
a mesoscopic scale [10,37,36,38]. On a microscopic scale, on the
other hand, there is continuous development of the coherency
of crystal-like bond orientational order in high-density regions,
which accompanies a gradual increase in positional order (PO)
and the resulting densification (see text) [38].

gain upon crystal ordering, but decreases the crystal-
liquid interfacial energy drastically, which in total results
in a substantial decrease in the nucleation barrier, i.e.,
the enhancement of the nucleation probability. This may
be regarded as wetting-induced crystallization. This pref-
erential crystal nucleation in regions of high crystal-like
bond orientational order [37,36] may be consistent with
the above described view that bond orientational order-
ing plays a crucial role in crystallization.
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Our physical scenario of crystallization can be sum-
marized as follows [36,38]. After a quench from an equi-
librium liquid state to a supercooled state, medium-range
bond orientational order whose symmetry has a connec-
tion to an equilibrium crystal structure (fcc or hcp in hard-
sphere colloids with more weight in fcc [13,38]) first devel-
ops as spontaneous thermal fluctuations. When high bond
orientational regions accidentally have high local density
as a consequence of thermal fluctuations, crystal nucle-
ation is initiated with a high probability by accompanying
the increase in the coherence of bond orientational order
without a discontinuous density jump [38]. Here we note
that although regions of high crystal-like bond orienta-
tional order does not have high density on average, some
regions can have high density as a result of thermal fluc-
tuations. Thermal density fluctuations allows a system to
access a density of crystal nuclei. Thus, crystal nucleation
always happens in a region of a supercooled liquid simulta-
neously having high crystal-like bond orientational order
and high density, as shown in fig. 57. However, we stress
that a factor triggering crystal nucleation is the former
and not the latter: the latter is a necessary condition, but
not a sufficient condition. The sequence of crystallization
from melt induced by a temperature quench is thus de-
scribed as follows: i) an initial homogeneous equilibrium
liquid at a high temperature → ii) an “inhomogeneous”
supercooled liquid with crystal-like bond orientational or-
der fluctuations after the equilibration after the quench →
iii) a continuous increase in the phase coherency of crystal-
like bond orientational order in a region of high density →
iv) the formation of a crystalline phase due to the de-
velopment of translational order induced by the growth
of crystal-like bond orientational order. In the conven-
tional scenario, step ii) is replaced by “homogeneous dis-
ordered supercooled liquid” and step iii) has not been con-
sidered. Furthermore, we emphasize that processes i)-iv)
continuously take place at the microscopic level. The ki-
netic pathway in the ρ-Q plane is schematically shown in
fig. 57.

Since the Ostwald’s seminal argument, intermediate
states between the initial liquid and the final crystal state
has been searched from the crystal side [482,483,70,79,
484]. However, our study demonstrates that it is crucial
to consider hidden structural ordering in a supercooled liq-
uid. We argue that the slowness of these structural fluctu-
ations is also crucial for nucleation to efficiently take place.

This hidden ordering in a supercooled liquid further
suggests an intimate link between crystallization and glass
transition. Namely, a supercooled liquid is intrinsically
heterogeneous and, in this sense, homogeneous nucleation
may necessarily be “heterogeneous”. The state of a super-
cooled liquid is prepared, or self-organized, for future crys-
tallization. This feature can be seen in a glass-forming liq-
uid: although crystal nuclei whose size exceed the critical
nucleus size are usually not formed in a good glass former,
small transient nuclei are spontaneously formed selectively
in regions of high crystal-like bond orientational order, as
can be observed in fig. 38(c) and (d). Such crystal nu-
clei should be regarded as a part of bond order parameter
fluctuations.

a b

Fig. 58. (Colour on-line) Mechanism of polymorph selection.
(a) Order parameter W4 for liquid particles having Q6 > 0.25,
0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32 (the order is given by the
arrow). As Q6 increases, the regions of high structural order in
the liquid are characterized by a growing population of fcc-like
clusters. (b) Order parameter W6 for liquid particles having
Q6 > 0.27, 0.28, 0.29, 0.30, 0.31, 0.32. As Q6 increases, the
distributions move to lower and negative values of W6, thus
showing no preference for the bcc symmetry (W6 > 0). Here Ql

and Wl are both coarse-grained ones. This figure is reproduced
from fig. 3 of ref. [38].

Recently Russo and Tanaka also revealed that the se-
lection of polymorphs is made by crystal-like bond orienta-
tional order formed in a supercooled liquid [38,39]. Thus,
it is the state of a supercooled state that determines the
fate of crystallization by imposing the initial condition
on crystal nucleation (more specifically, symmetry selec-
tion). Here we consider crystallization of hard spheres as
an example to see the selection mechanism of crystal poly-
morphs. For hard spheres, it is known that fcc crystal has
almost the same energy as hcp crystal in bulk. However,
we found that fcc is 1.5 times more abundant than hcp.
The similar result was also reported by Filion et al. [497].
Crystals repeatedly appear, grow and melt as represented
by the fluctuations in the bond orientational order param-
eter Q6. Since crystal nuclei appear from regions of high
bond orientational order (see fig. 38(c) and (d)), the study
of such regions should provide important information on
the forming nuclei. It was found [38] that not only the pre-
cursor regions act as seed for crystal growth, but they also
determine which polymorph will be nucleated from them.
We used the order parameters W4 and W6, which are very
useful in the detection of polymorphs. W6 is a good order
parameter to distinguish between bcc crystals and close-
packed crystals (hcp and/or fcc), since it is positive in the
first case, and negative for the latter. W4 is instead good to
distinguish between fcc crystals (for which it has negative
values) and hcp crystals (for which it has positive values).
Figure 58(a) shows the probability distribution for the or-
der parameter W4 in liquid regions having Q6 higher than
a fixed threshold, Qthr

6 . The W4 distribution was obtained
by considering only liquid particles (crystal particles are
not included in the histogram) in the metastable state (be-
fore the critical nucleus is formed), and the Qthr

6 thresh-
old values are always within the liquid distribution. While
the metastable liquid has on average a symmetrical dis-
tribution around W4 = 0, fig. 58(a) reveals that the high
Q6 regions have a predominant contribution from nega-
tive values of W4, which correspond to the fcc symmetry.
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Fig. 59. (Colour on-line) Probability density for the structural
order parameter S̃ in the (Q6, ρ) plane. The structural order
parameter S̃ expresses the number of connected neighbours in
a continuous way (for its definition, see ref. [38]). The number
of connected neighbours grows continuously from 0 to 12 from
the fluid to the crystal phase. This figure is reproduced from
fig. 2 of ref. [38].

Since we have shown that crystals form from particles of
high Q6, the following scenario emerges for the nucleation
of hard-sphere crystals: the supercooled melt develops re-
gions of high orientational order, whose symmetry favours
the nucleation of the fcc phase (fig. 58(a)). Figure 58(b)
plots the probability distribution for the order parame-
ter W6, showing that indeed the regions of high Q6 dis-
play no preference for the bcc symmetry (characterized by
W6 > 0).

To summarize, crystallization starts from QCRY order-
ing and then density ordering (positional ordering) comes
into play later [38]: Microscopically, crystallization starts
from locally high density regions inside the regions of high
bond orientational order, both of which are spontaneously
formed by thermal fluctuations [38]. We note that density
fluctuations whose amplitude is determined by isothermal
compressibility KT , can often allow a system to locally ac-
cess the lower bound of crystal density. The importance of
locally high density regions as precursors was also pointed
out by ref. [494]. However, our study [38] shows that high
local density is a necessary condition for crystal nucle-
ation, but not a sufficient condition. On a microscopic
scale it is bond order parameter and neither density nor
translational order that triggers crystal nucleation. This
can be clearly seen in fig. 59: 1) Contour lines are almost
parallel to the ρ axis signalling that crystallization is pro-
moted mostly by bond orientational order. 2) Regions of
high ρ contain particles in a range of environments from
fluid-like to crystal-like, which means that density fluctu-
ations alone are not sufficient to promote crystallization.
Our finding is markedly different from the conventional
view based on macroscopic observation where we can see
a discontinuous change in the density upon crystal nu-
cleation. This clearly indicates the crucial role of bond
orientational ordering in crystallization.

Fig. 60. (Colour on-line) An example of elementary particle
rearrangements triggering crystal nucleation in hard spheres.
The transition from fluid-like to crystal-like structures can hap-
pen at constant density, and can be rationalized by the small
cage rearrangements, which are sufficient to promote the tran-
sition with very little density change. This figure is reproduced
from fig. 2 of ref. [38].

Crystal nucleation is triggered by the enhancement of
the phase coherence of bond orientational order in high
density regions in a metastable liquid and then transla-
tional order follows afterwards [38]. An example of such
local crystallization without accompanying density change
is illustrated in fig. 60: Here small displacement of parti-
cles (white arrow in fig. 60(a)) can induce the increase
in the coherency of crystal bond orientational order (see
fig. 60(b)). This looks natural, considering that crystal
nucleation starts from a very small size: It is difficult to
define translational order for such a small region, since
it is characterized by periodicity over a long distance.
Translational order can be attained in the growth process
of nuclei, but not in the nucleation process. The theory
of crystallization may need to be fundamentally modified
to incorporate these findings probably along the line de-
scribed in sect. 2.3. How universal this scenario is to more
complex liquids remains for future investigation, but our
preliminary studies on soft sphere and water suggests the
universality [39,38].

In relation to this, we mention that a recent simula-
tion study [498] showed a pivotal role played by liquid
polymorphism, through the formation of the low-density-
liquid droplet, during the crystal nucleation process in liq-
uid Si, which has a liquid-liquid transition.

Finally, we mention a recent work which suggests crit-
ical concentration fluctuations may help crystallization of
protein solutions [499,500]. In analogy to this, we may
view the above phenomenon as enhanced crystal nucle-
ation (positional ordering) by critical fluctuations asso-
ciated with another phase ordering (bond orientational
ordering), if we regard glass transition as a sort of criti-
cal phenomena associated with bond orientational order-
ing, which is supposed to occur at the ideal glass transi-
tion point T0 [24,269,270,10]. Unlike the case considered
in [499], the order parameter is tensorial, which is the key
to the selection of crystal symmetry (polymorph).

6.3 Other interesting topics on crystallization

Usually it is believed that growth of crystal in a glassy
state is extremely slow because of its solid-like nature, or
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Fig. 61. T -dependence of the crystal growth rate divided by
the difference in the free energy between liquid and crystal,
Gkin, which should be proportional to to the translational dif-
fusion D (left: OTP; right: salol). For salol, squares are for form
I crystal, and triangles for form II crystal. The solid curves
represent T/η (η: viscosity) calculated from the viscosity data,
and the broken lines represent η−ξ with ξ = 0.74 for OTP and
ξ = 0.71 for salol. The lines are vertically shifted to fit the
data. This figure is reproduced from fig. 1 of ref. [504].

extremely slow transport [1] and thus we can practically
assume that a glassy state is stable against crystallization.
For example, this is a basis for storing materials in a glassy
state for a long period of time while avoiding crystalliza-
tion. Contrary to this common belief, Greet and Turnbull
discovered a striking phenomena in o-terphenyl [501] and
later it was systematically studied by Oguni and cowork-
ers [502,503]. They observed the growth of a crystal from
the surface of a crystal previously formed above Tg. They
found discontinuous enhancement of crystal growth be-
haviour just below Tg for some molecular liquids. The in-
crease of the growth rate across Tg is far more than one
order of magnitude (see fig. 61). This phenomenon has
remained as a mysterious phenomenon.

Recently we proposed the following mechanism: the
volume contraction upon crystallization and the resulting
mechanical stress provides a region near the crystal-glass
interface with large excess free volume, which results in
the mobility increase at the growth front and leads to en-
hancement of the crystal growth [280,504]. The role of
high bond orientational order near the crystal surface [38]
is also to be clarified. A different scenario was also pro-
posed by Yu and his coworkers [505,506]. This problem
may also be related to crystallization of colloids in the
glassy state [507].

Another interesting topic is wall-induced crystalliza-
tion. Recently it was shown that heterogeneous nucleation
of colloids near the wall is induced by a sort of wetting ef-
fects [508]. This may be explained by combining our sce-
nario with wall-induced bond orientational ordering [395].
Crystal nucleation may be helped by pre-existing crystal-
like bond orientational order with wall-induced enhance-
ment of the order (see sect. 5.8). Since translational order
is also enhanced in the form of layering near a wall, it is
interesting to study roles of these two types of orderings
induced by a wall in wall-induced crystallization.

Finally, we should mention the large discrepancy be-
tween theory and experiment on the crystal nucleation
rate [54,509]. This has still remained as an unsolved mys-
tery [497,510]. We note that on this point there was a
mistake in the estimation of the volume fraction in our
paper [36], which led us to a wrong estimation of the vol-
ume fraction dependence of the nucleation rate [511,510].

6.4 Intimate link between crystallization and
vitrification

The above novel scenario of crystal nucleation strongly
supports our physical picture (at least for the systems
studied) that both liquid-glass transition and crystalliza-
tion are governed by the same free energy, e.g., f(ρ,QCRY,
QLFS), and the state of a supercooled liquid is prepared
for future crystallization.

The crystalline state can be described by translational
order alone once it is formed. This is because translational
ordering automatically accompanies long-range bond ori-
entational ordering. However, this does not necessarily
mean that bond orientational ordering is not important.
We argue that bond orientational ordering is a key to the
physical description of liquid and plays crucial roles in
crystallization and glass transition. We emphasize that
bond orientational order has local nature whereas transla-
tional order has global nature. Thus, it looks natural that
crystal nucleation, which is a local event, is initiated by
local bond orientational ordering and not by translational
ordering. The increase in the coherency of the phase of
bond orientational order may be prerequisite for the devel-
opment of translational order. Glassy structural ordering
may be viewed as ordering towards low free-energy local
structures. Such structures have stress-bearing solid-like
nature, which originates from its long structural lifetime.
and thus has a deep link to low fluidity.

We can say that the rotational symmetry which is go-
ing to be broken upon crystallization is already broken
“locally” in a supercooled liquid. Growth of its spatio-
temporal fluctuations under frustration is an origin of
glassy slow dynamics and dynamic heterogeneity. Further-
more, crystal-like bond orientational order triggers crystal
nucleation with a high probability if regions of high order
can reach a density required for crystallization by spon-
taneous thermal density fluctuations. Stronger frustration
against crystallization leads to the lower probability of
crystal nucleation since it reduces the degree of crystal-like
bond orientational ordering. This not only suggests the
intrinsic link between glass transition and crystallization,
but also indicates that a supercooled liquid is “not” in a
homogeneous state, but has mesoscopic spatio-temporal
structures (see fig. 62). Thus, a supercooled liquid is not
a simple liquid, but rather should be regarded as a soft-
matter-like complex fluid.

When the strength of frustration on crystallization is
so strong that crystallization must involve phase separa-
tion, glassy order no longer has a direct link to the symme-
try of the crystal, but may still be associated with low lo-
cal free-energy configurations [12,11]. The validity of this
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Fig. 62. Schematic figure showing the difference between a
classical picture of a supercooled liquid (the homogeneous liq-
uid picture) and a picture based on our study (the spatio-
temporally inhomogeneous liquid picture). For the latter we
used a typical structure of a supercooled colloidal liquid [13].

physical picture is to be checked carefully for various glass-
forming systems.

We emphasize that 1) we cannot forget effects of
bond orientational ordering associated with crystalliza-
tion when considering glass transition at least for single-
component liquids and 2) we cannot forget glassy struc-
tural ordering when considering crystallization. Namely,
there is an intimate link between crystallization and vit-
rification at least in quasi-one-component systems (type-I
glass formers) (see fig. 27). We argue that disturbance or
frustration against crystal-like bond orientational order
may be enough to prevent crystallization.

7 Summary and open questions

In this review, we demonstrate that liquid is not in
a random disordered, homogeneous state, but has local
and mesoscopic structural orders, which can be charac-
terized by bond orientational order parameters in many
cases. Such orderings are a consequence of many-body
correlations, particularly, bond angle correlations, which
have not been properly considered for the physical de-
scription of the liquid state. There are two sources for
such bond orientational correlations: energetic directional
bonding and packing-induced constraint for bond orienta-
tion. On the basis of this picture, we have described our
two (multi)-order-parameter model of liquid, which may
describe water-like thermodynamic anomalies of liquids,
liquid-liquid transition, liquid-glass transition, and crys-
tallization in a coherent and unified manner. We argue
that all these phenomena can be described by the same
free energy, which implies that their unified description
may be possible. We also discuss the relationship between
these phenomena on the basis of our model.

In particular, we put focus on spontaneous bond orien-
tational ordering in liquid, which plays important roles in
water-like anomalies, liquid-liquid transition, glass tran-
sition, crystallization, and quasicrystal formation. The
number density of locally favoured structures plays a sig-
nificant role in water-like anomaly and the cooperative

excitation of locally favoured structures is the origin of
liquid-liquid transition. In these cases, the order parame-
ter can be treated as a scalar, the rotationally invariant
form of the relevant bond orientational order parameter.
On the other hand, the symmetry of bond orientational
order may play a crucial role in crystallization, quasicrys-
tal formation, and liquid-glass transition. In particular,
the tensorial nature of the bond orientational order plays
a crucial role in the symmetry selection upon crystalliza-
tion and its initiation. The difference in the nature of the
order parameter between the former two phenomena and
the latter two phenomena may reflect that the former phe-
nomena are liquid phenomena, which can be described
by a scalar order parameter, whereas the latter phenom-
ena are linked to crystallization accompanying symmetry
breaking, which needs to be described by a tensorial or-
der parameter and its spatial coherence. This difference
together with whether there is frustration or not may ex-
plain why the former does not have a direct link to fluidity,
whereas the order parameter responsible for glass transi-
tion has a direct link to fluidity, or solidity. However, the
very origin of the link between glassy structural order and
solidity is not perfectly clear yet, although a possible link
has been discussed in this article. Thus we need further
studies on this point.

In glass transition, competition between bond orienta-
tional order parameter compatible to the crystal symme-
try and that incompatible to it leads to strong frustration
effects against crystallization. We show that crystal-like
bond orientational order (more generally, glassy structural
order) exhibits critical-like fluctuations apparently diverg-
ing towards the ideal glass transition point and the result-
ing growing activation energy may be responsible for slow
glassy dynamics. Yet, the nature of glassy structural or-
der for multi-component systems (type-III systems, e.g.,
binary mixtures) remains elusive.

Since our model involves many speculative arguments,
further experimental, numerical, and theoretical studies
are highly desirable to check the validity of this physical
view.
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21. W.K. Röntgen, Ann. Phys. U. Chim. (Wied) 45, 91

(1892).
22. H. Tanaka, Phys. Rev. B 66, 064202 (2002).
23. Y. Tsuchiya, J. Phys.: Condens. Matter 3, 3163 (1991).
24. H. Shintani, H. Tanaka, Nat. Phys. 2, 200 (2006).
25. H. Tanaka, Europhys. Lett. 50, 340 (2000).
26. H. Tanaka, J. Chem. Phys. 112, 799 (2000).
27. H. Tanaka, J. Phys.: Condens. Matter 15, L703 (2003).
28. H. Tanaka, R. Kurita, H. Mataki, Phys. Rev. Lett. 92,

025701 (2004).
29. R. Kurita, H. Tanaka, Science 306, 845 (2004).
30. R. Kurita, H. Tanaka, J. Phys.: Condens. Matter. 17,

L293 (2005).
31. H. Tanaka, J. Chem. Phys. 111, 3163 (1999).
32. H. Tanaka, J. Chem. Phys. 111, 3175 (1999).
33. H. Shintani, H. Tanaka, Nat. Mater. 7, 870 (2008).
34. H. Tanaka, Phys. Rev. Lett. 90, 055701 (2003).
35. H. Tanaka, J. Phys.: Condens. Matter 15, L491 (2003).
36. T. Kawasaki, H. Tanaka, Proc. Natl. Acad. Sci. U.S.A.

107, 14036 (2010).
37. T. Kawasaki, H. Tanaka, J. Phys.: Condens. Matter 22,

232102 (2010).
38. J. Russo, H. Tanaka, Sci. Rep. 2, 505 (2012) doi:10.1038/

srep00505.
39. J. Russo, H. Tanaka, Soft Matter 8, 4206 (2012).
40. O. Mishima, H.E. Stanley, Nature 396, 329 (1998).
41. C.A. Angell, Science 319, 582 (2008).
42. P.G. Debenedetti, J. Phys.: Condens. Matter 15, R1669

(2003).

43. P.H. Poole, T. Grande, C.A. Angell, P.F. McMillan, Sci-
ence 275, 322 (1997).

44. P.F. McMillan, M. Wilson, M.C. Wilding, D. Daisen-
berger, M. Mezouar, G.N. Greaves, J. Phys.: Condens.
Matter 19, 415101 (2007).

45. W. Brazhkin, A.G. Lyapin, J. Phys.: Condens. Matter
15, 6059 (2003).

46. C.A. Angell, Science 267, 1924 (1995).
47. M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem.

100, 13200 (1996).
48. A. Cavagna, Phys. Rep. 476, 51 (2009).
49. L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
50. W. Götze, Complex Dynamics of Glass-Forming Liquids:

A Mode-Coupling Theory (Oxford University Press, Ox-
ford, 2009).

51. L. Berthier, G. Biroli, J.P. Bouchaud, L. Cipelletti, W.
van Saarloos, Dynamical Heterogeneities in Glasses, Col-
loids, and Granular Media, Vol. 150 (Oxford University
Press, 2011).

52. K. Binder, W. Kob, Glassy Materials and Disordered
Solids: An Introduction to Their Statistical Mechanics
(Revised Edition) (World Sci. Pub., 2011).

53. S.P. Das, Statistical Physics of Liquids at Freezing and
Beyond (Cambridge University Press, 2011).

54. K.F. Kelton, A.L. Greer, Nucleation in Condensed Mat-
ter: Applications in Materials and Biology (Pergamon,
2010).

55. S. Auer, D. Frenkel, Adv. Polym. Sci. 173, 149 (2005).
56. R. Sear, J. Phys.: Condens. Matter 19, 033101 (2007).
57. U. Gasser, J. Phys.: Condens. Matter 21, 203101 (2009).
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73. M.V. Jaŕıc, Phys. Rev. Lett. 55, 607 (1985).
74. S. Hess, Z. Naturforsch. A 35, 69 (1980).
75. A.C. Mitus, A.Z. Patashinskii, Phys. Lett. 87A, 179

(1982).
76. A.C. Mitus, A.Z. Patashinskii, Phys. Lett. 98A, 31

(1983).
77. J. Michalski, A.C. Mitus, A.Z. Patashinskii, Phys. Lett.

A 123, 293 (1987).
78. A.D. Haymet, Phys. Rev. B 27, 1725 (1983).



Page 78 of 84 Eur. Phys. J. E (2012) 35: 113

79. P.R. ten Wolde, M.J. Ruiz-Montero, D. Frenkel, Phys.
Rev. Lett. 75, 2714 (1995).

80. D.R. Nelson, J. Toner, Phys. Rev. B 24, 363 (1981).
81. P. Bak, Phys. Rev. Lett. 54, 1517 (1985).
82. N.D. Mermin, S.M. Troian, Phys. Rev. Lett. 54, 1524

(1985).
83. P.A. Kalugin, A.Y. Kitaev, L.S. Levitov, JETP Lett. 41,

119 (1985).
84. H. Tanaka, J. Non-Cryst. Solids 351, 678 (2005).
85. D.R. Nelson, M. Widom, Nucl. Phys. B 240, 113 (1984).
86. C. Likos, Soft Matter 2, 478 (2006).
87. C. Likos, Phys. Rep. 348, 267 (2001).
88. M. Watzlawek, C.N. Likos, H. Löwen, Phys. Rev. Lett.
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437. M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wenic, M.

Gilleen, R. Dronskowski, Nat. Mater. 6, 122 (2006).
438. M. Wuttig, N. Yamada, Nat. Mater. 6, 824 (2007).
439. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neuge-

bauer, M. Wuttig, Nat. Mater. 7, 972 (2008).
440. T. Matsunaga, J. Akola, S. Kohara, T. Honma, K.

Kobayashi, E. Ikenaga, R.O. Jones, N. Yamada, M.
Takata, R. Kojima, Nat. Mater. 10, 129 (2011).

441. J. Orava, A.L. Greer, B. Gholipour, D.W. Hewak, C.E.
Smith, Nat. Mater. 11, 279 (2012).

442. J.C. Phillips, J. Non-Cryst. Solids 34, 153 (1979).
443. J.C. Phillips, J. Non-Cryst. Solids 43, 37 (1981).
444. J.C. Phillips, J. Non-Cryst. Solids 44, 17 (1981).
445. S. Alexander, Phys. Rep. 296, 65 (1998).
446. M.F. Thorpe, J. Non-Cryst. Solids 57, 355 (1983).
447. P. Boolchand, G. Lucovsky, J.C. Phillips, M.F. Thorpe,

Philos. Mag. 85, 3823 (2005).
448. D.B. Miracle, Nat. Mater. 3, 697 (2004).
449. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma,

Nature 439, 419 (2006).
450. N. Jakse, A. Pasturel, Appl. Phys. Lett. 93, 113104

(2008).
451. N. Jakse, A. Pasturel, Phys. Rev. B 78, 214204 (2008).
452. S. Wu, M.J. Kramer, X.W. Fang, S.Y. Wang, C.Z. Wang,

K.M. Ho, Z.J. Ding, L.Y. Chen, Phys. Rev. B 84, 134208
(2011).
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