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Abstract. Molecular reorientation processes induced in thin ferroelectric liquid crystal systems by strong
alternating external electric fields are studied both by solving numerically the equation of reorientation
motion of molecules and by measuring the electro-optic response of thin samples. It is shown that the occur-
rence of a wide band in nonlinear response spectra above the Goldstone-mode frequency is a consequence
of complex partially uncorrelated molecular reorientations enforced within smectic layers by sufficiently
high fields of high enough frequencies. Such nonlinear reorientational motions of molecules are argued
to have a character of weakly chaotic long-lasting transients, related to almost periodic modulations of
the amplitude of rotational oscillations performed by molecules with the field frequency. These modula-
tions have been numerically proved to proceed with lower frequencies than the field frequency and with
space-dependent depths of temporal changes. The occurrence of the modulations has experimentally been
confirmed by registering distinct contributions to electro-optic response spectra at frequencies less than
the running frequency of the applied electric field.

1 Introduction

Nonlinear effects of molecular reorientations in liquid crys-
tals (LCs) have intensively been studied under excitations
mediated both by high electric field and intense light [1–8].
Spatiotemporal dynamic processes underlying these ef-
fects play an important role not only in basic research
but also in technological applications. In particular, the
electro-optic switching process [9], which is strongly non-
linear in nature, underpins the operations of modern dis-
play, light modulators, and switch devices. To investigate
nonlinear effects in LCs, various methods have been devel-
oped, most of them, however, in the context of the nonlin-
ear dielectric spectroscopy [10–20]. The dielectric response
of smectic LCs on strong electric fields has been analyzed
by determining higher harmonic components of the di-
electric permittivity spectrum ε(ω) with ω = 2πf , where
f is the frequency of an applied electric field. It has theo-
retically been shown that third-order and fifth-order har-
monic contributions to ε(ω) involve only one characteristic
time, i.e., that they are determined by one relaxation time,
equal to the linear relaxation time [5, 11–14, 16, 17, 19].
However, experimental results obtained for SmC systems
with the helical superstructure suggest that the third-
order and fifth-order relaxation times, characterizing, re-
spectively, the third-order and fifth-order harmonic com-
ponents of ε(ω), are different from the linear relaxation
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time [17, 19], although the single time scale approach ap-
pears to be justified for some cases [11–14,17]. Clearly, one
can expect that such a simple single time scale description
of the nonlinear response of LCs, based on representing
the azimuthal angle of molecules as a sum of fundamen-
tal and higher harmonics [5, 19], will be adequate for liq-
uid crystalline materials that are rather stiff, i.e., for LC
substances that display large elastic constants, and/or for
applied electric fields which are not too strong. In such
cases, the theoretical relation for fundamental contribu-
tion to nonlinear response spectra has a form of the De-
bye type, similarly as in the case of the linear response
spectra [16, 17]. In agreement with the theoretical pre-
diction, the simple Debye form (or slightly broadened) of
fundamental components of nonlinear spectra, related to
collective molecular reorientation processes, have been re-
produced experimentally [17].

The fundamental contribution to the response spectra
of surface stabilized ferroelectric liquid crystal (SSFLC)
systems, [21] experimentally determined for sufficiently
strong fields, displays, however, much more complex form
than the simple Debye type or somewhat broadened De-
bye type [22]. In addition to considerable influence on
the fundamental harmonics of ε(ω) due to collective az-
imuthal reorientations of molecules within smectic lay-
ers, sufficiently strong fields induce high-frequency, rela-
tively broad band which can even be separated from lower-
frequency band corresponding to collective processes. The
appearance of the high-frequency band in the response
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spectra of SSFLCs can be interpreted as a consequence of
decorrelation or partial decorrelation of molecular reorien-
tations [22–24]. Such a complex molecular excitations can
in turn be considered as resulting from an interplay be-
tween anchoring of molecules at plates confining samples
and the action of strong enough electric field. It is thus
clear that a proper description of complex dynamics of
SSFLCs under very strong fields requires other approach
than that used to determine nonlinear response spectra
through seeking a solution of the motion equation for the
azimuthal reorientations of molecules in a harmonic ex-
pansion. This follows from the mere fact that the method
based on the harmonic expansion of the azimuthal angle
does not account for the high-frequency band in the fun-
damental component of the response spectra. Naturally,
the nonlinear motion equation describing azimuthal re-
orientations of molecules possesses solutions of different
types, which apply in different regimes of amplitudes and
frequencies of the external electric field. In particular, it
has been shown that a motion equation involving depolar-
ization interactions has a solution in the form of solitary
waves [22]. However, solitons can be excited in thin sam-
ples only within a rather narrow range of field frequencies
and, therefore, their propagation cannot be responsible
for emerging a broad high-frequency band in the response
spectra.

In this paper, the complex dynamics induced by strong
alternating electric fields in SSFLC systems with the ver-
tical chevron structure is studied both theoretically and
experimentally. To analyze nonlinear effects of azimuthal
reorientations of molecules, a usual dynamic field equation
expressing the balance of moments acting on molecules
is applied. However, solutions to this equation are found
numerically, neither assuming a priori that they can be
represented in harmonic expansion nor imposing any spe-
cial functional form for their time dependence. Anchoring
interactions at sample surfaces are taken into considera-
tion implicitly by assuming that the azimuthal angle is
space dependent, at least initially, i.e., when the external
electric field is absent. The electric field is taken to be
strong enough to dominate the anchoring interactions, so
these interactions can be ignored as soon as the electric
field is turned on. It is shown that even then the elec-
tric field cannot completely eliminate the inhomogeneity
of the azimuthal angle for a class of initial space distri-
butions of this angle (determined by the anchoring in-
teractions). Furthermore, the systems are proved to dis-
play quasi-periodic processes in longer time scales than
the scale of the oscillation period 1/f of the electric field.
An experimental evidence for the occurrence of such slow
dynamic processes in strongly nonlinear SSFLC systems
is given.

2 Experimental background

To analyze strongly nonlinear effects in LCs, the liquid
crystalline mixtures Felix 15-100 and Felix 17-100 (Clari-
ant) sandwitched between plates of thin cells were used
as model systems. In thin cells (from a few to several mi-

crons in thickness), these LCs form stable smectic layers
of bookshelf or chevron structures at temperatures from a
wide range [9]. Cells (Linkam), chosen to prepare measur-
ing samples, possessed the same thickness d = 5μm. They
were constructed from glass plates coated with conduct-
ing, semitransparent material ITO (indium-tin-oxide), en-
abling light to pass through the samples. Experimental
studies of nonlinear reorientations of molecules within
smectic layers have been carried out by registering the
response of planarly oriented samples to an external si-
nusoidally alternating electric field, with the use of the
electro-optic method [25]. All measurements were per-
formed at fixed temperature T = 30 ◦C, i.e., 47 ◦C be-
low the temperature of the transition of the studied LC
materials from ferroelectric to paraelectric phase. At such
thermal conditions, samples used in experiments formed
stable chevroned layers, oriented nearly perpendicular to
confining plates. Furthermore, the alignment of smectic
layers remained rather stable throughout experiments per-
formed at different applied alternating fields, as was evi-
denced by a large stability of sample textures. The am-
plitude of azimuthal reorientations remained relatively
small (distinctly less than π), especially at intermediate
and high field frequencies. Then, fixing the angle ϑ be-
tween the optic axis and the light polarization direction
at the value ϑ = π/8, we were able to measure the coeffi-
cient of the light transmittance for values of the molecu-
lar azimuthal angle belonging to ranges (field-dependent)
within which this coefficient changed monotonically with
the azimuthal angle. Since all considerations presented
below concern only the fundamental component of the
response spectra, or more precisely their increments due
to field-induced reorientations of molecules, the notation
ε(ω) ≡ ε1(ω) is henceforth adopted for simplicity’s sake.
It should be pointed out that the fundamental compo-
nents of the electro-optic spectra are denoted here by ε(ω)
because dielectric and electro-optic responses of SSFLCs
are usually consistent within a wide range of the field fre-
quency, including the frequencies of special interest in this
paper [26].

The electro-optic response spectrum measured for a
high-voltage amplitude U0 = 20V (rms) is shown in fig. 1,
where a spectrum determined for a weak-voltage ampli-
tude U0 = 0.2V is plotted for comparison. As is seen, the
frequency dependence of the nonlinear spectrum evidently
differs from the Debye-like form, typical for the linear
spectra. It is striking that, for sufficiently high voltages,
ε(ω) displays the existence of a rather wide high-frequency
band. This band is distinctly visible in the diagram of
ε′′(ω) drawn in fig. 1, above the frequency f ≈ 3 kHz.
The appearance of a high-frequency band in nonlinear re-
sponse spectra of SSFLCs can be considered as a conse-
quence of a decrease of the correlation between molecular
reorientations within smectic layers under strong electric
fields. The resulting partially uncorrelated dynamic pro-
cesses can certainly originate in a complex interplay be-
tween surface anchoring interactions, which tend to sup-
press molecular oscillatory rotations, especially effectively
at sample surfaces, and the interactions of molecules with
a strong electric field, which tends to rotate molecules with
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Fig. 1. Real and imaginary parts of nonlinear and linear
electro-optic response spectra of Felix 15-100 LC, measured
respectively for U0 = 20 V: ε′(ω) (•), ε′′(ω) (�) and for
U0 = 0.2 V: ε′(ω) (�), ε′′(ω) (�). The scale between the linear
and nonlinear spectra is not respected.

a large amplitude. Essentially, the anchoring interactions
act on molecules located at cell plates. However, owing to
the existence of elastic couplings between molecules, these
interactions influence also the orientation of molecules sit-
uated inside samples. As a result of the occurrence of the
countervailing tendencies towards controlling the motion
of molecules and/or as a consequence of the inhomogeneity
of the electric field inside smectic layers, there can occur
a space-dependent phase shift between rotational oscilla-
tions of molecules (located at different positions within a
given smectic layer) and the field oscillations. Clearly, the
dependence of the phase shift on the position of individ-
ual molecules is associated with the existence of different
relaxation times of the system, and is thereby associated
with the emergence of a rather broad frequency band in
ε(ω). Another way in which the decorrelation of molecular
orientational oscillations can manifest itself is a complex
space and time dependence of the amplitude of these os-
cillations.

Essentially, one might suppose that the existence of
different time scales in the studied LC mixtures would be
a result of the appearance of individual dynamic processes
associated with different compounds of these systems.
This would be possible if molecular reorientations within
smectic layers were completely desynchronized. However,
such a desynchronization process might appear when elas-
tic molecular interactions within smectic layers would be
extremely small, but then this process should also appear
at relatively weak fields. Thus, the occurrence of individ-
ual field-induced molecular reorientations connected with
particular compounds of studied mixtures can be consid-
ered as improbable.

In order to examine the variation in the complex
dynamic behavior of SSFLCs as the applied voltage
grows, the Cole-Cole diagrams experimentally obtained
for electro-optic response of a sample filled with Felix 17-
100 LC have been plotted in fig. 2 for a sequence of voltage
amplitudes. This figure shows that there is no regular evo-
lution of the response spectra when the voltage amplitude
increases. It is seen that the Cole-Cole diagrams display

Fig. 2. Cole-Cole diagrams experimentally determined for Fe-
lix 17-100 LC at U0 = 10, 20, . . . , 70 V. The diagrams are
marked by respective voltage amplitudes. The arrows indi-
cate limiting measurement points, obtained for f = 10 Hz and
f = 100 kHz.

a complex form even in the regime of low frequencies. In
particular, the dependence of the diagrams on U0 is not
monotonous for a given (small) frequency. This can be
considered as a simple consequence of the fact that rela-
tively large contributions to the low-frequency part of the
nonlinear response of SSFLCs not only come from collec-
tive reorientations of molecules but also from other dy-
namic processes, such as ionic currents and movements of
walls of zig-zag defects in the regular chevron structure
of SSFLCs [27–29]. As well known, the chevron structure
spontaneously forms in SSFLCs, when their thickness is
not very small. In general, this structure is transformed to
the bookshelf or quasi-bookshelf structure under strong
enough fields, and then the zig-zag defects are entirely
or only partially destroyed. However, in cases of applied
field oscillating with low frequencies, the defected chevron
structure can temporarily rebuild when the field is equal
to zero or is close to zero. Such rebuild processes can easily
be observed when their characteristic times are faster than
the period of the field alternation. Due to a large complex-
ity of the low-frequency dynamic processes appearing in
SSFLCs at strong fields, a theoretical description of these
processes would be very difficult. Consequently, the anal-
ysis of the nonlinear behavior of SSFLCs is carried out
here only for high external fields of rather high than low
frequencies. Moreover, the irregular variation of the shape
of the Cole-Cole diagram under changing U0 is especially
distinct for high frequencies. Clearly, the mere appearance
of the high-frequency band in the fundamental component
of the response spectra clearly indicates that the complex
dynamics of SSFLCs in strong fields cannot be described
by expressing the azimuthal angle of molecules in a form
of the harmonic expansion. Below, an approach to analyze
molecular reorientations induced by very strong fields is
presented.
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3 Numerical analysis of molecular rotational
motions

Field-induced reorientations of molecules in SSFLCs ex-
hibiting vertical chevron geometry can be described by
assuming that chevron slabs are oriented nearly perpen-
dicular to sample plates and by assuming that the chevron
structure is transformed to a quasi-bookshelf structure un-
der the external electric field [9]. The effect of straighten-
ing of chevron smectic layers is especially distinct in the
case of strong applied fields (constant or alternating) and
then the smectic layers can be treated as being upright.
Thus, the linear size of such uprighted smectic layers in
the direction perpendicular to cell plates is equal to d.
Spatial fluctuations of molecular orientations can be in-
vestigated separately within each of the smectic layers by
determining the space dependence of the azimuthal angle
φ between vectors of the local polarization and the ex-
ternal electric field [27–29]. Accordingly, the fluctuations
of φ can be investigated only along one direction, say the
x direction, perpendicular to plates confining the sample.
When an alternating electric field E(t) = E0 cos(ωt) of
the amplitude E0 = U0/d and the angular frequency ω is
applied to sample plates, say in the x direction, the spatio-
temporal dependence of φ = φ(x, t), where 0 � x � d, can
be found by solving the motion equation [9]

K
∂2φ

∂x2
− γ

∂φ

∂t
= PSE0 sin φ cos ωt, (1)

where K is the elastic constant characterizing deforma-
tions inside smectic layers, γ denotes the rotational vis-
cosity, and PS is the spontaneous polarization. Inserting
x = x̃d and t = t̃/ω into eq. (1), one can express this
equation in the following dimensionless form

1
2
c1

∂2φ

∂x̃2
− ∂φ

∂t̃
= c2 sinφ cos t̃ (2)

with 0 � x̃ � 1 and with the parameters

c1 =
2K

γωd2
, (3)

c2 =
PSU0

γωd
. (4)

The solution to the above motion equation is postu-
lated here to have the nonuniform shape (cf., refs. [27–29]):

φ(x̃, t̃) = a0(t̃) + a1(t̃)x̃ + a2(t̃)x̃2, (5)

where the coefficients ai, i = 0, 1, 2, are space indepen-
dent. Generally, these coefficients do not have all identi-
cal functional form. Initial values of ai (in the absence of
the external electric field) are determined by appropriate
boundary conditions, involving surface anchoring interac-
tions [27–31]. After the electric field is switched on, the
coefficients ai change according to electric field oscilla-
tions. This change can reveal different character depend-
ing on the frequency and the amplitude of the electric

field. Clearly, the time dependence of a1 and a2 is associ-
ated with a temporal variation of the nonuniformity of φ.
For instance, special cases when both the coefficients a1

and a2 are decreasing functions of time and, conversely,
when both a1 and a2 are increasing functions of time cor-
respond respectively to global (for all 0 � x̃ � 1) field-
stimulated reduction and magnification of the nonunifor-
mity level of φ. The action of surface anchoring interac-
tions is taken into account here only through boundary
conditions at E0 = 0. Obviously, in the presence of strong
enough electric fields, molecular motions are almost en-
tirely field-controlled, and then the anchoring effect due to
surface interactions can be neglected. In this approxima-
tion, the azimuthal angle is determined without imposing
on it any time-dependent boundary conditions.

Equations describing the time evolution of the coeffi-
cients ai, i = 0, 1, 2, can be obtained by substituting (5)
into eq. (2). Consequently, one finds

d
dt̃

a0 = c1 a2 − c2 cos t̃ sin a0, (6)

d
dt̃

a1 = −c2 cos t̃ a1 cos a0, (7)

d
dt̃

a2 = −c2 cos t̃

(
a2 cos a0 −

1
2
a2
1 sin a0

)
. (8)

The role of nonlinearity parameters in the above set of
equations is played by c1 and c2, which involve ω and
U0 (see eqs. (3) and (4)). To solve these equations, the
Runge-Kutta-Gill numerical integration method [32] of
fourth order has been used. Calculations have been per-
formed for material constants determined at T = 30 ◦C
(for the LC mixture Felix 17-100 in a cell of thickness
d = 5μm) [22]: PS = 2.9 × 10−4 Cm−2, γ = 0.055Pa s,
and K = 1.5 × 10−9 N. Values of the amplitude and fre-
quency of the applied field have been taken to be U0 = 20,
40, 60V, and f = 3, 4, 5 kHz, respectively. Note that, at
these values of U0 and f , azimuthal rotations of molecules
in the sample under study are rather weakly correlated
(this is reflected in fig. 1).

Solutions to eqs. (6)–(8) have been derived in the form
of trajectories generated in the space (a0, a1, a2) for dis-
crete integer-valued time tn = t0 + nh, where t0 denotes
time at which the electric field is switched on, h > 0
is the sampling interval, and n = 0, 1, 2, . . . . More pre-
cisely, the use of the numerical integration procedure to
eqs. (6)–(8) yields discrete flow maps, which can be iter-
ated beginning with some initial values a

(0)
0 , a

(0)
1 , and a

(0)
2

(at n = 0) of the coefficients a0, a1, and a2, respectively.
Depending on the initial values of ai, resulting orbits ob-
tained for h = 0.01 (i.e., sufficiently small value of the
sampling interval) and for t0 = 0 have revealed very dif-
ferent asymptotic behavior. Generally, for the initial val-
ues (at n = 0) of the coefficients a1 and a2 very close to
zero, both these coefficients tend to zero as n increases.
This suggests that strong electric fields can establish the
uniformity of the molecular orientation distribution across
smectic layers in systems with very weak surface anchoring
interactions (initial values of a1 and a2 are then small in
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Fig. 3. Projection of the trajectory obtained numerically at
U = 20 V and f = 4 kHz, for 0 � n � 185000, starting from

a
(0)
0 = −0.01, a

(0)
1 = 0.3, and a

(0)
2 = −0.003.

absolute values). Another case of trivial trajectories takes
place if at least one of the coefficients a1 and a2 is ini-
tially large enough in absolute value. Then, the action
of the electric field leads to an indefinite enhancement of
the level of spatial nonuniformity of the azimuthal angle.
In this case, molecules are allowed to perform complete
rotations, independently of each other. This seems to be
rather unrealistic since in real systems the LC material is
bounded by rigid cell plates, and in order to complete ro-
tations would be possible, molecular reorientations should
have to some extent cooperative and consistent character.
Hence, it follows that a proper description of field-induced
nonlinear effects in SSFLCs with very strong surface an-
choring of molecules requires taking into account spatial
restrictions of molecular motions. There exists, however,
a set of immediate initial values of a

(0)
i , i = 0, 1, 2, for

which trajectories evolve in a nontrivial, complex way, but
are confined to a finite subspace, reflecting partially un-
synchronized oscillatory character of molecular motions at
high frequencies of strong fields.

Characteristic properties of the complex trajectories
are presented below by the example of the evolution of a
representative discrete orbit, generated at U0 = 20V and
f = 4kHz, for the initial values a

(0)
0 = −0.01, a

(0)
1 = 0.3,

and a
(0)
2 = −0.003. Projection of the resulting initial frag-

ment of the orbit on the (a0, a2) plane is presented in
figs. 3 and 4 at U0 = 20V, for 0 � n � 1.85 × 105 and
107 � n � 1.06×107, respectively. Note that, for the sam-
pling interval assumed here, the period of the field oscilla-
tion corresponds approximately to the number Np = 628
(Np ≈ 2π/h). Accordingly, the shape of the trajectory
shown in fig. 3 might suggest that this orbit is periodic
or quasi-periodic [33] in a long time scale compared with
Np. However, as n further increases, the trajectory reveals
a tendency to evolve towards different regions of the co-
efficients space. This is illustrated in fig. 4, where a long
fragment (6 × 105 iteration steps) of the trajectory ob-
tained after 107 initial iteration steps is shown on the same

Fig. 4. The trajectory of fig. 3 prolonged for 6× 105 iteration
steps beginning from n = 107. Every fifth data point is only
plotted.

Fig. 5. Projection of the trajectory onto the (a2, a1) plane,
determined at U = 20 V and f = 4 kHz, for 0 � n � 185000,

and a
(0)
0 = −0.01, a

(0)
1 = 0.3, and a

(0)
2 = −0.003.

scale as in fig. 3. Such a slow nonperiodic evolution of the
trajectory persists over very long time scales. The slow
transitory feature of the trajectory is also reflected in its
projection onto the (a2, a1) plane, as shown in figs. 5 and 6
for U = 20V and f = 4kHz. The drawings in figs. 3 an 4
exemplify results on systematic analysis of the long-time
behavior of the considered orbit. These results seem to in-
dicate that, as n → ∞, the trajectory ultimately falls into
a one-dimensional subspace determined by a1 = 0 and
a2 = 0. Then, after an infinite time, the applied alternat-
ing electric field would completely suppress the nonunifor-
mity of the space distribution of the azimuthal angle.

Results of figs. 3–6 evidently show that time depen-
dences of the coefficients ai, i = 0, 1, 2, are different. Then,
in view of eq. (5), the time evolution of the azimuthal an-
gle φ differs for particular positions of molecules located
within a given smectic layer. This has a direct consequence
for the dynamics of the whole cell, as reorientations of
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Fig. 6. Prolongation of the trajectory of fig. 5 for 6 × 105

iteration steps starting from n = 107. Every 20th data point is
plotted.

molecules cannot be considered to be strongly correlated
in time. (Even if the correlation of molecular reorienta-
tions is initially strong, it becomes weak after a period
of time.) Obviously, the complex cell dynamics should be
reflected in the response spectra of the system. However,
before discussing the effect of the complex dynamics of
molecules on dynamic properties of the whole system, it
is instructive to analyze the asymptotic behavior of the
coefficients ai.

To gain more insight into the nature of the long-
time effect of external fields on the dynamic behavior
of the studied systems, local Lyapunov exponents λi,
i = 1, 2, 3, [34–36] have been calculated for time series
n = 0, 1, . . . , N of different (finite) length N . Calculations
have been carried out using the method developed by Wolf
et al. [36]. Results obtained for 105 � N � 2 × 108 and
different voltage amplitudes, but for the same voltage fre-
quency f = 4kHz and the same set of initial values of ai,
i = 1, 2, 3, are presented in fig. 7. It is seen that the tem-
poral dependences of λi, i = 1, 2, 3, change significantly
as the control parameter U0 varies. Nevertheless, long-
time behaviors of λi determined for different U0 exhibit
some qualitative similarities. It is especially remarkable
that all three local Lyapunov exponents take on values
close to zero, and that at least one of the exponents is
positive for sufficiently large finite N . After some initial
time period, the exponents λi obtained for U = 20V and
U = 40V tend monotonically or nearly monotonically to
zero as N grows. (In the case of U = 60V, asymptotic be-
haviors of λi appear to be somewhat more complicated.)
Since calculations of local Lyapunov exponents are not
very reliable for very large N due to computer accuracy
limitations [36], the long-time analysis of λi has not been
continued for time periods greater than 2 × 108. There-
fore, one cannot conclusively determine the type or types
of attractors on which the studied trajectories fall as N
approaches infinity. However, in view of results of fig. 7,
the behavior of these trajectories over long time periods

Fig. 7. Local Lyapunov exponents shown as functions of the
number of trajectory points generated for f = 4 kHz and U0 =
20 V (a), U0 = 40V (b), and U0 = 60V (c), starting from the

same initial parameter values a
(0)
0 = −0.01, a

(0)
1 = 0.3, and

a
(0)
2 = −0.003.

can be classified as long weakly chaotic transients [37,38].
During these chaotic transients, the system is very sen-
sitive to even small variations of U0 (note that the non-
linearity parameter c2 is proportional to U0). Then, any
changes of U0 lead, in general, to unpredictable changes of
the dynamic state of the SSFLCs and, thereby, to erratic
changes of the shape of high-frequency part of the Cole-
Cole diagram. It should be noted that chaotic behaviors
have also been argued to occur in optically excited ne-
matic LCs [3, 4, 7–9, 15]. Moreover, the possibility of the
occurrence of chaos in smectic LC systems has been re-
ported on the basis of an analysis of dynamic instability
that can appear when soliton-like excitations induced by
a static external field are perturbed by the application of
a slowly oscillating field [39].

Using numerical data for the coefficients ai, one can
easily determine the azimuthal angle (eq. (5)) as a func-
tion of time (at a particular molecular position in a smec-
tic layer). Since the time dependences of ai, i = 1, 2, 3, are
in general different, the character of the time evolution
of φ(x̃, t̃) changes as x̃ varies. Although φ(x̃, t̃) exhibits
fast oscillations which, for all x̃, have the same frequency,
equal to the field frequency, the amplitude of these oscilla-
tions undergoes a superimposed, nearly periodic modula-
tion of the depth Am, which depends on x̃. Furthermore,
for small enough x̃, the superimposed phase modulation
transits nearly periodically from in-phase mode to anti-
phase mode and conversely. The aperiodic character of
the modulation becomes noticeable for long time periods,
much longer than the period of the field alternation. Thus,
as far as not too long time periods are considered, the
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Fig. 8. Time dependence of the azimuthal angle plotted as
a function of the number of trajectory points generated for
U0 = 60 V and f = 4kHz, starting from the initial parameter

values a
(0)
0 = −0.01, a

(0)
1 = 0.3, and a

(0)
2 = −0.003: x̃ = 0.01

(1), x̃ = 0.5 (2), x̃ = 1.0 (3). Data points are connected by
lines.

Fig. 9. The plot of fig. 8, continued through iteration steps
106 ≤ n ≤ 106 + 104.

modulation can be treated as being periodic. The quasi-
frequency fm of such an aperiodic modulation of φ(x̃, t̃)
is identical for all x̃ and is, in general, much smaller than
the field frequency.

It should be also noted that both Am and fm depend
on the frequency and the amplitude of applied voltages
(for the same time periods). In particular, the frequency
fm turns out to be an increasing function of f and a de-
creasing function of U0 (within appropriate ranges of suf-
ficiently large f and U0). Note that the field-induced mod-
ulation of the amplitude of the molecular azimuthal angle
is a strongly nonlinear effect that occurs when the space
distribution of this angle within smectic layers is inhomo-
geneous in the absence of the external field and when the
space inhomogeneity persists over long periods of time af-
ter a strong alternating electric field is turned on. Clearly,
space inhomogeneity of SSFLC systems is imposed by an-
choring interactions at bounding plates of these systems.

For a better visual presentation, the time dependence
of φ has been shown (figs. 8 and 9) for relatively large
U0 = 60V (Am is then very large). In fig. 8, the temporal
evolution of φ is plotted at various molecular positions, for

Fig. 10. Time dependence of the azimuthal angle at x̃ = 0.5
determined for U = 60V and different field frequencies: f =
3.5 kHz (1), f = 4.0 kHz (2), and f = 4.5 kHz (3). Initial pa-

rameter values were assumed to be a
(0)
0 = −0.01, a

(0)
1 = 0.3,

and a
(0)
2 = −0.003.

initial N = 104 iteration steps, while a further evolution,
after 107 iterative steps, is drawn in fig. 9 for the same
positions of molecules and for the same time period. It is
seen that φ exhibits an asymmetric behavior near bound-
ary surfaces (i.e., for x̃ ≈ 0 and x̃ ≈ 1). Obviously, such
a asymmetry is a consequence of specific boundary con-
ditions assumed here to reflect the asymmetry of surface
anchoring interactions in typical SSFLCs [30,31]. Compar-
ing the drawings of fig. 8 and 9 evidently shows that fm

becomes smaller as the number of iterative steps grows. In
spite of that, the modulation frequency appears to be iden-
tical for all x̃ (in the same relatively short time periods),
the modulation depth Am is rather strongly space depen-
dent. Moreover, the phase shift βm between modulations
of φ(x̃ + δx̃, t̃), where δx̃ �= 0, such that 0 � x̃ + δx̃ � 1,
and φ(x̃, t̃) is nonzero and also depends on x̃. This is in
contrast with the corresponding phase shift βf between
fast oscillations (with the frequency f) at different molec-
ular positions. As seen in figs. 8 and 9, βf takes only two
values: 0 or π.

The space and time dependence of the depth modu-
lation of fast oscillations (with the frequency f) of the
azimuthal angle as well as the space variation of phase
of modulations are a clear sign of desynchronization of
molecular reorientations. The complexity of these pro-
cesses is also reflected in a rather strong dependence (for
fixed U0 and x̃) of fm, Am, and βm on the field frequency,
as illustrated in fig. 10. Since fm < f , the modulation
of the amplitude of molecular reorientations occurs in a
longer time scale than the temporal scale of the field oscil-
lations. Nevertheless, the f -dependence of fm, and thereby
the f -dependence of Am and β leads to an intricate vari-
ation of the azimuthal angle when f is changed, and, con-
sequently, leads to a complex form of the response spec-
tra ε(ω) like those shown in fig. 1. The reason for the
occurrence of a high-frequency band in these spectra is
the nonuniformity of the depth and the phase shift of the
modulation. It should be pointed out that, although the
phase of fast oscillatory molecular reorientations is fully
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synchronized, the phase of quasi-periodic modulation, and
thereby the overall reorientation motion of molecules, is
not synchronized (due to the nonuniformity of the am-
plitude and phase of the modulation). The nonuniformity
of molecular reorientations can be considered as the ex-
istence of small regions (with respect to the thickness of
a sample) in smectic layers, within which molecules can
undergo nearly synchronized reorientation motions with
specific relaxation times shorter than the relaxation time
of Goldstone-mode oscillations. However, to show this ex-
plicitly, one would know the functional form of the con-
tribution to ε(ω) coming from local changes of φ under
strong fields.

It must be stressed that, although the theoretical
model considered here predicts, for fixed U0 and f , the oc-
currence of a single quasi-frequency fm of the modulation
of fast oscillatory molecular reorientations, one can expect
that the nonlinear response of real SSFLC systems dis-
plays the existence of a broad low-frequency band rather
than a single signal (at the frequency fm < f). Indeed,
the modulation of reorientation oscillations of molecules
appears when SSFLCs remain in the chaotic state dur-
ing long time periods. Then, the time evolution of the
systems can strongly be influenced even by small fluctua-
tions of parameters controlling the nonlinear behavior of
the systems [38]. In particular, such fluctuations can orig-
inate in device noise, associated, e.g., with uncontrollable
variations of the amplitude and/or frequency of the ap-
plied field. Clearly, the resulting perturbation of the time
evolution of SSFLCs can lead to a considerable smearing
of signals registered at frequencies that are lower than the
field frequency.

There emerges the question if a more adequate de-
scription of the complex nonlinear behavior of SSFLCs
would require a generalization of the motion equation to
include depolarization and anisotropy contributions [9].
Since both these contributions exhibit the same depen-
dence on the azimuthal angle and the depolarization con-
tribution is usually much greater (in absolute value) than
the anisotropy one [23,24], the latter contribution can be
neglected. As concerns the depolarization, this process is
responsible for excitation of local soliton-like excitations
propagating within smectic layers [22], but is rather of mi-
nor importance for establishing complex nonlocal, weakly
correlated molecular motions. This follows from the fact
that the depolarization process is significant in SSFLCs
when the azimuthal angle is strongly inhomogeneous, i.e.,
when at least one of the parameters a1, a2 is sufficiently
large in absolute value. In that case, most of molecules
would perform large-amplitude oscillations, or even full
rotations, nearly independent of each other. As such in-
consistent large-amplitude reorientations of molecules are
suppressed in real systems by rigid cell plates and cou-
plings between molecules belonging to adjacent smectic
layers, the level of inhomogeneity of the azimuthal angle
through entire smectic layers cannot be very large. Con-
sequently, the depolarization effect can also be omitted in
describing complex, partially correlated molecular reori-
entations of not too large amplitudes. Numerical results
obtained for different U0 show that the amplitude of φ is

not very large even for relatively high voltages (say, for U0

not greater than 40V), and systematically decreases with
time.

It is obvious that the mere modulation of φ should be
reflected in the electro-optic response of SSFLCs at fre-
quencies lower than the current frequency of the applied
field. Since chaotic trajectories are very sensitive even on
weak external noise [33], one should expect that response
signals associated with the modulation of fast oscillations
of molecular orientations will appear in real systems over
some frequency range rather than at a rigidly determined
modulation frequency. This does not mean, however, that
external noise (coming, e.g., from the measuring device)
destroys possible long-lived chaotic transient states of the
studied systems. Indeed, a typical property of chaotic
transients is their stability against external noise [40]. In
the next section, an approach to detect the electro-optic
response at frequencies below the frequency of an applied
field is presented.

4 Experimental evidence of low-frequency
nonlinear effects

As shown in the preceding section, the application of
strong electric fields of sufficiently high frequencies to a
ferroelectric LC sample causes complex reorientational
motions of molecules. This gives rise to corresponding
changes in optical transmission of the sample placed be-
tween crossed polarizers and, thereby, leads to the occur-
rence of the electro-optic effect. Then, using the photodi-
ode light detector, the transmittance changes can be con-
verted into appropriate variations in the output voltage,
easy to register. If the field is strong enough to produce
nonlinear effects, the amplitude of oscillations of trans-
mitted light intensity is expected to vary as described
above, i.e., the amplitude of oscillation of the intensity of
transmitted light is expected to undergo a quasi-periodic
modulation that might be detectable at frequencies lower
than the excitation (field) frequency f . However, the depth
of this modulation can be small but a component of fre-
quency fm could be measurable, if the sensitivity of de-
tection system was sufficiently high. Accordingly, a simple
method to enhance the sensitivity (i.e., the signal/noise
ratio) consists in narrowing the frequency window of the
detection circuitry. In our experiment, this requirement
was fulfilled by using a selective amplifier of the type 233
made by Unipan (Warsaw). This instrument has a sen-
sitivity better than 10−7 V rms and possesses adjustable
selectivity up to 54 dB per octave. Such a selectivity is
equivalent to the FWHM (full with at half-maximum) of
about 8% in the frequency scale. The center of the trans-
mitted frequency is continuously tunable from 1.5Hz to
150 kHz. The amplitude of voltages used in experiments
was changed from a fraction of a volt up to 20V (rms),
while the voltage frequency was varied in the range from
1 kHz to 10 kHz. The modulation components were mea-
sured at frequencies ranging from 1.5Hz to frequencies
above the field frequency. A scheme of the measuring setup
is presented in fig. 11.



Eur. Phys. J. E (2013) 36: 2 Page 9 of 11

Fig. 11. Simplified scheme of the experimental setup.

Fig. 12. Typical oscilloscope picture of fluctuations of the am-
plified selective voltmeter output obtained for a sample of Felix
17-100. The amplitude and frequency of the applied voltage
were, respectively, U0 = 20 V and f = 4kHz. The selective
voltmeter was set to the frequency fs = 230 Hz.

Obviously, the modulation of the transmittance oscil-
lations has been searched at frequencies lower than the
frequency of applied external field. Despite careful search
we did not succeed in finding any modulation of stable fre-
quency (except for the frequency of the electric power and
its harmonics, which had no interest here). Instead, we ob-
served large fluctuations of the amplified output voltage
Uout of the selective amplifier at different frequencies fs

adjusted for the transmission. Note that Uout, measured at
selected fixed frequencies fs less than the field frequency,
characterizes possible modulations of fast transmittance
oscillations (these oscillations proceed with the field fre-
quency). Exemplary time variation of Uout, registered for
the selected frequency fs = 230Hz, is shown in fig. 12.
This figure indeed displays the existence of a relatively
slow modulation of light transmittance oscillations (the
modulation is visible in the figure as quick periodic varia-
tions of the period Ts = (230Hz)−1 ≈ 0.004 s). However,
the amplitude of the modulation behaves very irregularly
in time. It is evident from fig. 12 that, although registered
signals exhibit modulated fast oscillations, the modula-
tion cannot be characterized by a single frequency or even
by a single quasi-frequency. As already mentioned in the
preceding section, such an irregularity in the modulation
can be considered as resulting from a large sensitiveness
of the studied strongly nonlinear systems to the exter-
nal noise. Next, instant absolute values of Uout were av-
eraged using a low-pas RC filter with the time constant

Fig. 13. Dependence of the average amplitude of the voltage
at the output of selective voltmeter on the selected frequency
(corresponding to the modulation frequency), derived for the
Felix 17-100 mixture at the applied voltage of the frequency
f = 4kHz (indicated by an arrow) and of different amplitudes:
U0 = 0 (�), U0 = 0.5 V (•), and U0 = 20V (�). For compari-
son, the selectivity curve of the amplifier is presented (dotted
line). This curve has been obtained by applying the voltage
of the appropriately adjusted amplitude Usel = 500 μV and
frequency 4 kHz directly to the amplifier input (see the text).

of several seconds. Results for the averaged output volt-
age |U |out obtained at the excitation frequency f = 4kHz
are illustrated in fig. 13 for different amplitudes of the
applied voltage. A strong response of the system at the
excitation frequency is seen. In the case of high voltage
(U0 = 20V), a distinct response occurs also at the second
and third harmonics of the excitation frequency. More in-
teresting is, however, the existence of a wide low-frequency
band in the nonlinear response spectrum. Comparing low-
frequency spectra derived for U0 = 0.5V and U0 = 0 indi-
cates that the low-frequency band is absent in the case of
linear spectra. In view of the analysis of the previous sec-
tion, the existence of the low-frequency band reflects the
occurrence of modulations of molecular reorientational os-
cillations, which proceed with the field frequency. The ap-
pearance of a wide low-frequency band (rather than a sin-
gle peak corresponding to a definite modulation frequency
fm) in nonlinear response spectra, represented here by the
dependence of |U |out on the selected frequency fs, can
be attributed to a field-provoked large sensitivity of the
studied systems on the external noise. To convince oneself
that the low-frequency band in the nonlinear spectrum
|U |out(fs) is not generated by the very selective ampli-
fier as a consequence of its finite selectivity, the selectivity
spectrum of the amplifier was determined by applying a
voltage of frequency 4 kHz directly to the input of the am-
plifier. The amplitude of this voltage was taken approxi-
mately the same as the amplitude of the preamplifier out-
put (see fig. 11), resulting from molecular reorientations
under an external voltage of the amplitude U0 = 20V
and of the frequency f = 4kHz. Then, at U0 = 20V and
fs = 4kHz, the averaged output voltage |U |out had the
same magnitude for signals originating both in molecular
reorientations induced by external alternating voltage and
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in alternations of the voltage applied to the amplifier in-
put (see fig. 11). However, within a wide range of selected
frequencies below 4 kHz, the response spectrum obtained
for Usel is much lower than the nonlinear spectrum (deter-
mined for U0 = 20V), and approximately coincides with
the linear spectrum (derived for U0 = 0.5V). Thus, the
finite selectivity of amplifier is not responsible for the ap-
pearance of the low-frequency band in the nonlinear spec-
tra |U |out(fs).

The selective measurement of the field-induced re-
sponse of LCs at a chosen frequency can, in principle,
be performed by applying phase detection technique us-
ing the lock-in amplifier. We tried to apply this technique
but the attempt was, however, unsuccessful. We suppose
that this was caused by the extremely narrow frequency
window, amounting to a small fraction of a hertz, when
the lock-in amplifier is working in its standard mode. As
well known, it is extremely difficult to synchronize the
phase detector with a signal of unknown frequency with
the precision of a fraction of one hertz. Moreover, it can be
expected that the fluctuations of modulation frequency fm

are much larger than the frequency window of the detec-
tor. Then, the synchronization will never be finished, be-
cause the process of synchronization of the detector needs
a sufficiently long time period. Clearly, the frequency win-
dow of the detector must be small (to reduce noises) but
not too small, so as to allow the synchronization process
to be completed. This requirement makes the application
of the lock-in amplifier to selective measurements rather
aimless. There emerges, however, another opportunity to
employ the lock-in amplifier in investigating low-frequency
contributions to response spectra of the studied systems.

As seen in fig. 12, the amplitude of oscillations (with
the frequency fs) of the voltage Uout strongly fluctuates
in time. Thus, the depth of modulation of fast transmit-
tance oscillations behaves as it would undergo an intense
noise. Consequently, one can try to detect low-frequency
modulations of oscillatory alternations of the transmit-
tance using methods originally developed for noise mea-
surements, i.e., one can attempt to detect these modula-
tions through measuring the level of noise of registering
signals. For this purpose, we applied the lock-in amplifier
of the type SR 530 (Stanford Research). Furthermore, to
ascertain whether the modulation effect is not specific only
to the Felix 17-100 LC material, noise measurements were
carried out for samples containing the Felix 15-100 mix-
ture, in the same conditions and within the same range of
selected frequencies as in the experiment described above.
The frequency window was set equal to 10Hz. Results
of measurements are presented in fig. 14, where the level
of noise is represented by the average of absolute value
|U |n of the voltage Un at the output of the lock-in am-
plifier. The similarity of these results to those obtained
using the selective amplifier is evident (cf., fig. 13). The
noise measurements also reveal the occurrence of the low-
frequency band (associated with the modulation of fast
oscillations) in the nonlinear response spectra (obtained
for U0 = 20V). For U0 = 0.5V, the modulation with
the frequency less than 1 kHz is not detectable, as in the

Fig. 14. Frequency dependence of the noise level registered for
the Felix 15-100 LC as the average amplitude of voltage in the
output of the lock-in amplifier SR 530, at the same frequency
f = 4kHz but at different amplitudes: U0 = 0 (�), U0 = 0.5 V
(•), and U0 = 20 V (�) of the applied voltage.

case of results of fig. 13. Moreover, the results of fig. 14
indicate that signals registered at U0 = 20V are much
stronger than those measured at U0 = 0. This means that
the appearance of the low-frequency band in the non-
linear response spectra cannot be considered as coming
from a noise generated by measuring devices used in our
experiment. In particular, the photonic noise cannot be
considered responsible for the observed dynamic effect, as
the intensity of light falling on the photodetector has not
changed after applying external voltages (this has been
thoroughly checked). Then, experimental results obtained
by applying both detection methods give a strong evidence
for the existence of relatively slow modulations of light in-
tensity oscillations. Furthermore, the nonlinear character
of these modulations has undoubtedly been confirmed.

An important question that arises is whether dynamic
processes induced by strong fields of low frequencies have
also transitory chaotic, or simply chaotic, character. As
already mentioned (sect. 2), nonlinear processes activated
at low field frequencies (motions of structural defects,
changes in the texture, nonlinear ionic currents, etc.) are
much more complex than nonlinear molecular reorienta-
tions, investigated here in the case of high-field frequen-
cies. It is rather clear that it would be very difficult to for-
mulate a formalism that would adequately describe com-
plex low-frequency processes and possible interferences be-
tween them. Therefore, there is no actual theoretically
grounded evidence on whether or not strongly nonlinear
low-frequency processes reveal chaotic character. Never-
theless, Cole-Cole diagrams determined on the basis of ex-
perimental electro-optic data (fig. 2) reveal a complicated
nonmonotonic variation under changes of the external field
also within the low-frequency region. It should noted that
the complex nonlinear behavior of the studied system has
been observed both at weaker and stronger voltage am-
plitudes than U0 = 20V, used in all experiments as a
standard voltage amplitude. However, the lowest value of
U0 at which the strongly nonlinear behavior of the system
can experimentally be registered is not easy to determine
in a unique way.
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5 Conclusions

Nonlinear dynamic effects induced by strong external al-
ternating electric fields in SSFLCs have been described
using the balance torque equation. Numerical solutions of
this equation have displayed that strong enough fields of
appropriately high frequencies can disorganize correlated
molecular reorientations, preferred at weak fields. The re-
sulting complex partially asynchronous orientational mo-
tion of molecules has been argued to manifest itself in
a long-time scale associated with relatively slow mod-
ulations of fast oscillations executed with the field fre-
quency. The depth and the phase shift of these modula-
tions turn out to depend not only on space but also on
the frequency of the applied field. This can be responsible
for the complex form of the electro-optic spectra deter-
mined for strong fields. The effect of modulations of the
azimuthal angle has experimentally been detected by reg-
istering the electro-optic response of SSFLCs for frequen-
cies lower than the field frequency. Finally, one must point
out that the investigation of complex nonlinear dynam-
ics of SSFLCs may be of interest in better understanding
the switching processes between stable orientational states
when the action of the applied field is very strong, but not
strong enough to completely dominate the couplings be-
tween molecules forming smectic layers.
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