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Abstract. Nuclear quantum effects in atomic motions are well known at low temperatures T < 10K, but
analyses of structural relaxation in liquids and description of the glass transition traditionally neglect
quantum effects at higher temperatures, T > 50–100K. Recent studies, however, suggested that nuclear
quantum effects in systems of light molecules (e.g., water) might play an important role in structural
dynamics and provide non-negligible contributions at such temperatures, and even up to ambient tem-
perature. In this article, we discuss experimental evidences of the quantum effects in glass transition in
liquids of light molecules and possible theoretical descriptions of these effects. We show that quantum
effects may qualitatively change the temperature behavior of the structural relaxation time in supercooled
liquids leading to deviations of some well-established properties of the glass transition when it happens
at low temperatures. We also demonstrate that unusual behavior of water dynamics at low temperatures,
including apparent fragile-to-strong crossover, can be ascribed to nuclear quantum effects.

1 Introduction

Quantum effects in structural dynamics of condensed mat-
ter are well known at very low temperatures, usually below
∼ 10K [1–7]. They include atomic tunneling, zero-point
vibrations and associated energy, and indistinguishability
of particles. Traditional examples are two-level systems
in amorphous solids that manifest themselves in specific
heat, damping of acoustic modes [1–5], rotation of methyl
groups [6], several chemical reactions [7]. The contribution
of these quantum effects to structural relaxation usually is
neglected at temperatures above ∼ 20–50K. However, it
is becoming increasingly evident that quantum effects in
structural dynamics may be essential at much higher tem-
peratures, 100–200K. For example, it has been known for
some time that quantum effects can play a role in the melt-
ing of small clusters [8]. Recent simulations of Lennard-
Jones systems [9,10] and also quantum generalization of
the mode-coupling theory of the glass transition [11] sug-
gest that zero-point vibrations and tunneling might play
an essential role in the dynamics of glass-forming liquids,
and can either slowdown or accelerate the dynamics. Sim-
ulations also suggested that quantum effects might be es-
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sential in the diffusion of water molecules even at ambient
temperature [12–14]. Recently, the influence of the quan-
tum effect on the glide of dislocations was found at unusu-
ally high temperatures [15]. The authors have shown that
zero-point vibrations ease dislocation motions at temper-
atures up to ∼ 60K.

In many traditional well-studied cases (e.g., two-level
systems in glasses, methyl group rotation) quantum ef-
fects in dynamics have been analyzed in the picosecond-
microsecond time range [6,7]. Since the structural relax-
ation at glass transition takes much longer time on the
order of seconds-minutes, even low-probability tunneling
rate may become comparable with that of the thermal
activation at relatively high temperatures, especially for
light molecules. These results raise several fundamental
questions: Can quantum effects be important in the struc-
tural dynamics of supercooled liquids of light molecules?
Or liquids will solidify long before any quantum effects
have significant impact on structural relaxation? How
low should be the glass transition temperature for quan-
tum effects to be important and how will they affect the
glass transition? Which materials can show non-negligible
quantum effects in the glass transition?

These are the types of questions we are discussing in
this short review. First, we briefly present a theoretical
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basis of quantum effects, such as tunneling and zero-point
vibrations and energy, in the glass transition in sect. 2.
Some predictions for the influence of the quantum effects
on the temperature dependence of structural relaxation
and on the glass transition temperature of supercooled
liquids are discussed in sect. 3. The presented analysis
emphasizes the critical importance of the molecular mass
for quantum effects. One of the lightest molecules is wa-
ter, and the role of quantum effects in the water’s glass
transition is the major focus of our discussion in sect. 4.
To discuss the dynamics of supercooled water in a broader
temperature range we turn to the analysis of the dynamics
of confined water in sect. 5. In the end, we discuss the pos-
sibility of quantum effects in the structural dynamics of
other light molecule liquids and emphasize that neglecting
quantum effects in simulations might be one of the major
reason for their failure to reproduce consistently the prop-
erties of water.

2 Theoretical basis

The relative importance of the quantum effects at a tem-
perature T is usually quantified by the dimensionless pa-
rameter Λ∗(T ), which is the ratio of a particle thermal de
Broglie wavelength to the interatomic distance a,

Λ∗ =
�

a
√

kBMT
. (1)

As the thermal wavelength increases, Λ∗ increases and the
significance of quantum behavior also increases. Λ∗ is re-
lated to the de Boer parameter Λ = �/(a

√
kBMε) [16]

as Λ∗ = (ε/kBT )1/2Λ where ε is the well depth of the
pair potential [17]. Λ is useful for comparing the degree of
the quantum character of different liquids at a given tem-
perature. How large should be Λ∗ (i.e., how low should
be temperature and/or mass of the particles) in order for
quantum effects in the glass transition to be comparable
to the thermal ones is not clear a priori.

In order to understand how large should be the quan-
tum parameter Λ∗ to make quantum effects in the glass
transition comparable to classical thermal effects, we per-
form a rough estimation of the nuclear tunneling rate at
Tg, and compare it with the classical thermal activation
rate. Usually, the structural α-relaxation process in super-
cooled liquids is described as a thermally activated jump
over a potential energy barrier. The probability of the
jump is

W = τ−1
α (T ) = τ−1

0 exp
(
−Ea(T )

kBT

)
. (2)

Here τ−1
0 ∝ M−1/2 is an attempt frequency, Ea(T ) is the

activation energy. In general, there is a finite probability
for a particle to tunnel under the barrier. At very low
temperatures, activation processes become negligible and
quantum tunneling might dominate the structural relax-
ation. For a rough estimate of the tunneling rate we use
the quasi-classical approximation for the tunneling of a

particle with the energy E given by the Wentzel-Kramers-
Brillouin (WKB) equation [18]:

τ−1
α (T ) = τ−1

0 exp[−Atun(E)], (3)

Atun(E) =
2
�

∫ x2

x1

[2M(U(x) − E)]1/2dx. (4)

Here U(x) is the potential barrier, and E < U(x) for x
between x1 and x2. As has been shown in ref. [19], Atun at
low T is of the order of Eb/E0 for any reasonable potential,
where Eb is the height of the potential barrier and E0 =
�ω/2 is the zero-point energy.

Thus, in general, the role of quantum effects increases
drastically with an increase of zero-point energy relative to
the characteristic energy barrier controlling the structural
relaxation. At the glass transition temperature, by defini-
tion, ln τα(Tg)/τ0 ∼ ln 1017 ∼ 39. It means that the tun-
neling rate becomes comparable to the thermally activa-
tion rate at Tg if Eb/E0 ≤ 39. In the case of a purely ther-
mally activated structural relaxation one has Eb/Tg ∼ 39,
so Eb ∼ 39Tg. This leads to the condition Tg/E0 < 1 for
quantum effects to be important at Tg. In terms of vibra-
tional frequency, Tg/�ω < 1/2. Taking as a characteristic
vibrational frequency the Debye frequency, this condition
can be represented as

Tg/θD < 1/2, (5)

where θD is the Debye temperature. We will see below
that a similar result can be obtained in other approaches.

Returning to the quantum de Boer parameter (1), it
can be shown that in the Debye model of vibrations one
can express Ma2 in eq. (1) through Tg and θD using the
Lindemann criterion of melting. As a result, Λ∗ = γ

3
θD√
TgT

,

where γ = (r2(Tg)/a2)1/2 ≈ 0.12–0.15 is the Lindemann
parameter [20]. In particular, at the glass transition

Λ∗(Tg) = (γ/3)θD/Tg ≈ 0.05θD/Tg. (6)

Thus, the condition (5) roughly corresponds to Λ∗(Tg) >
0.1. This estimate agrees with the simulation data
(fig. 2(a) in ref. [9]) that predicted the onset of quantum
effects for diffusion in a supercooled liquid in this range
of Λ∗. The interpretation of this crossover value of Λ∗(Tg)
can be connected to the Lindemann criterion of melting.
The tunneling contribution to the structural relaxation is
comparable to the thermal one at Tg if the thermal wave-
length �

√
kBMTg is equal to or larger than ∼ 0.1a, the

latter value corresponds to the amplitude of atomic vibra-
tional displacements at Tg according to the Lindemann
criterion of melting [20].

Having this estimate, one can better understand the
range of temperature and molecular mass at which quan-
tum effects may be essential at the glass transition. Fig-
ure 1 shows the dependence of Λ∗ on the molecular mass in
several molecular liquids at T = 2Tm/3, Tm is the melting
temperature. The chosen temperature (2/3)Tm is assumed
to be close to Tg [21]. Actual Tg in low-temperature liq-
uids might be smaller than 2Tm/3 [22] and, respectively,
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Fig. 1. The dependence of the parameter Λ∗(T ) on the
molecular mass in molecular liquids at T = 2Tm/3 (expected
glass transition temperature). The length a was estimated as
(M/ρ)1/3 where M is the molecular mass and ρ is the density
in the liquid state.

Λ∗(2Tm/3) ≥ Λ∗(Tg). One can see that Λ∗ is significantly
larger than 0.1 for hydrogen, and there are some molecu-
lar liquids, such as methane, ammonia and water, where
Λ∗ is close to 0.1.

Using the definition of Λ∗(Tg) (eq. (1)) the condition
Λ∗(Tg) > 0.1 corresponds to

a∗2NT < 5000, (7)

where a∗ is the average intermolecular distance in
angstroms, and N = M/M0 is the molecular mass in
atomic units (M0 = 1.66 × 10−24 g). For example, if
a∗ ∼ 1.5 Å, then T (K) < 2200/N . So, such materials as
water (N = 18) or methane (N = 16) may have essen-
tial quantum effects in the structural relaxation even at
T > 100K. Of course, these estimates have accuracy only
by the order of magnitude.

To provide more quantitative analysis of the role of
the quantum effects, we will consider two approaches: The
first one is microscopic that takes into account the specific
parameters of the interparticle potential. The second one
is phenomenological in nature and is based on the elastic
theory of the glass transition [23,24].

2.1 Direct account of tunneling in a double-well
potential

Let us consider the probability of the over-barrier relax-
ation and tunneling in the double-well potential (fig. 2)
in more details, although still in a very simplified form.
A particle can escape a potential well either by a ther-
mally activated jump or by tunneling through the bar-
rier. In this approach the total rate of the relaxation is
found as a sum of the contribution from the thermally ac-
tivated jumps and from the tunneling under the barrier in
the same potential [25]. The potential is a harmonic one,

Fig. 2. Schematic representation of the potential well used
to estimate the tunneling probability. Blue lines correspond to
different quantum levels.

U(x) = kx2/2, k = Mω2, till the top, where it acquires a
constant value Eb (fig. 2). The tunneling can go from each
of the quantum levels with the energy En, so the total rate
τα(T ) for the particle to escape the well can be written as

τ−1
α (T ) = τ−1

0 P (E > Eb, T ) +
∑

n

Γ (En, T ) P (En, T ) .

(8)
The first term in the rhs of eq. (8) describes the thermally
activated jumps over the barrier with the height Eb, and
P (E > Eb, T ) is the probability for a particle in the well
to have the energy E > Eb. The second term describes the
probability of tunneling from all energy levels with ener-
gies En < Eb. P (En, T ) is the probability to occupy the
level with the energy En, and Γ (En, T ) is the tunneling
rate, which on the time scale of the glass transition can
be estimated in the WKB approximation as

Γ (En, T ) = τ−1
0 exp

[
−2

�

∫ x2

x1

√
2M(U(x) − En)dx

]
.

(9)
The potential U(x) is fixed by the curvature at the bottom
of the well (connected to the elastic constant k), the bar-
rier height Eb, and the barrier half-width at the bottom
a/2.

The probability P (En, T ) is equal to

P (En, T ) = A1 exp(−En/T ), (10)

where the constant A1 is determined by the normalization
condition ∞∑

n=0

P (En, T ) = 1. (11)

For the harmonic potential En = �ω(n + 1/2), so the
constant A1 can be found from the equation

A1

(
e−

�ω
2T

nmax∑
n=0

e−
�ωn

T +
∫ ∞

Eb/T

e−xdx

)
= 1 (12)

where nmax is the integer part of (Eb/�ω − 1/2).
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As a result,

A1 =

(
e−

�ω
2T

1 − exp(−�ω(nmax+1)
T )

1 − exp(−�ω
T )

+ e−
Eb
T

)−1

. (13)

Usually exp(Eb/T ) � 1, so one can rewrite eq. (13) as

A1 ≈ e
�ω
2T . (14)

We note that �ω/2 in eq. (14) is the zero-point energy E0.
The expression for the escape rate is now

τ−1
α (T ) = τ−1

0 e−
Eb−E0

T + τ−1
0

×
nmax∑
n=0

e−
En−E0

T − 4
√

2M
�

R x2n
x1n

q

kx2
2 −Endx

. (15)

The limits of the integral in eq. (15) are equal to x1n =
(2En/k)1/2, x2n = a/2. Denoting

zn =
x1n

a
=

√
2En

ka2
(16)

and explicitly taking the integral in eq. (15) we have

τ−1
α (T )=τ−1

0 exp
(
−Eb−E0

T

)
+τ−1

0

nmax∑
n=0

exp
{
−En−E0

T

−a
√

kM

�

[
2
√

1−zn (2−zn)+z2
n ln

zn

2+2
√

1−zn−zn

]}
.

(17)

This equation will be used later in sect. 4 to analyze
the temperature dependence of the structural relaxation
time in deeply supercooled water. Although it is only
schematic, it catches the essential parameters of the prob-
lem and can be compared with the experimental data. As
we will show below, this estimate predicts that the tun-
neling is essential at Tg in water, with reasonable values
of the parameters of the effective potential.

2.2 Accounting for quantum effects in the elastic
theory of the glass transition

The characteristic conditions needed for the importance
of the quantum effects in the structural relaxation can
be evaluated using a more phenomenological approach.
According to the elastic theory of the glass transition [23,
24], the structural relaxation time is equal to

τα(T ) = τ0 exp
(

A

r2

)
, (18)

where r2 is the mean-square particle displacement (MSD),
A = λ1a

2 and λ1 is a constant of the order of one. This
equation was first derived in ref. [26]. It was used for
the description of the structural relaxation in many other
papers [27–30]. The expression (18) was later improved

by suggesting non-linear relationships between log τα and
1/r2(T ) [31–33], which provided a better agreement with
experimental data. In ref. [31] the spatial fluctuations of
the parameter A in eq. (18) are taken into account, which
leads to a universal expression for τα:

log τα = a0+a1r
2(Tg)/r2(T )+a2(r2(Tg)/r2(T ))2, (19)

with a0 = −11.922, a1 = 1.622, and a2 = 12.3 (assuming
log τα(Tg) = 2).

Based on some analogy to the free-volume model, a
power law relationship was proposed in [32,33]:

τα = τ0 exp[A/r2(T )]α/2 (20)

with the exponent α ∼ 3.
The expressions (18)–(20) were derived in the classi-

cal thermally activated regime of structural relaxation,
thus they assumed only the thermal contribution to MSD.
However, total MSD includes the contribution of zero-
point oscillations, which are essential at low T :

r2 = r2
T + r2

0, (21)

here r2
T corresponds to thermal fluctuations, and r2

0 to
quantum fluctuations. It is not obvious a priori whether
the elastic theory of the glass transition should use the
total MSD, including zero-point vibrations. We will show
below that including zero-point MSD into eqs. (18)–(20)
can be justified as a good zeroth-order approximation that
takes into account tunneling effects in structural relax-
ation.

The total vibrational MSD can be expressed via the
vibrational density of states g(ω) as [34]

r2(T ) =
1
M

∫
g(ω)
ω

(n (ω, T ) + 1/2) dω. (22)

Here n(ω, T ) = (exp(hω/kBT )− 1)−1 is the temperature-
dependent Bose factor.

Respectively,

r2
T (T ) =

1
M

∫
g(ω)
ω

n (ω, T ) dω (23)

and

r2
0 =

1
2M

∫
g(ω)
ω

dω. (24)

In the Debye model of vibrations g(ω) = 9ω2/ω3
D, where

ωD = cD(6π2n)1/3 is the Debye frequency, n is the parti-
cle number density, cD = (3/(c−3

l + 2c−3
t ))1/3 is the De-

bye sound velocity, and cl and ct are the longitudinal and
transversal sound velocities, respectively. With this den-
sity of states

r2
T ≈ 9kBT

Mω2
D

at T ≥ �ωD (25)

and
r2
0 ≈ 9�

4MωD
. (26)



Eur. Phys. J. E (2017) 40: 57 Page 5 of 15

Fig. 3. The ratio of the thermal MSD r2
T to the zero-point

MSD r2
0 in the Debye model of vibrations. The dashed hori-

zontal line corresponds to r2
T = r2

0.

From eqs. (5) and (26) it follows that Mω0 = 9/(4r2
0), thus

Atun ∼ λ2a
2/r2

0, where λ2 ∼ 2Eb/Mω2
0a2 is a constant

of the order of one. A similar expression is derived for
Ather [23,24]: Ather(T ) ∼ λ1a

2/r2
T .

To combine two limiting regimes, one dominated by
the over-barrier relaxation Ather, and another by the tun-
neling Atun, one could employ the simplest Padé-like ap-
proximation for log τα, and the exponent A(T ) at all tem-
peratures can be represented roughly as

1/A = 1/Ather + 1/Atun. (27)

This approximation correctly reproduces the expected
low-temperature quantum limit (Ather → 0, A = Atun)
and high-T limit (Ather(T ) 
 Atun, A = Ather(T )).
Based on these two limits, it also makes a simple extrapo-
lation into the intermediate region where both amplitudes
are comparable.

From eq. (27) we have

A =
λ1a

2

r2
T + βr2

0

, (28)

where β = λ1/λ2 is a constant of the order of one. Thus, by
considering r2 in eq. (18) as the total MSD that includes
zero-point vibrations, we roughly take into account the
tunneling effect. It becomes comparable with the thermal
relaxation when r2

T ∼ r2
0. The analysis of the ratio r2

T /r2
0 in

the Debye model of vibrations (fig. 3) suggests that ther-
mal and zero-point contributions to the total MSD become
comparable at T/θD ∼ 0.5. It means that a significant in-
fluence of quantum effects on the glass transition might
be expected if Tg/θD < 0.5, in agreement with eq. (5) ob-
tained by a different method. We note that this estimate
in the Debye model does not take into account a possible
non-linear (anharmonic) temperature dependence of r2

T .
However, in most cases it should not be too important
at temperatures below or close to Tg where anharmonic

contributions to MSD are small enough to be neglected in
the present estimate. For example, for water, the anhar-
monic contribution to MSD at Tg is less than 10% [25], as
we will discuss in more detail below. Another factor that
influences the relation between r2

T and r2
0 is the excess

(in comparison with the Debye model) of low-frequency
vibrational modes, i.e. the boson peak [22]. These vibra-
tions enhance thermal MSD in comparison with the quan-
tum fluctuations, so the condition r2

T = r2
0 shifts to lower

temperature in comparison with the prediction of the De-
bye model. The shift might be 10–20% depending on the
strength of the boson peak [22].

3 Influence of quantum effects on glass
transition temperature and fragility

3.1 Shift of Tg

The tunneling adds an additional channel of structural re-
laxation that competes with the usual thermally activated
relaxation. This should lead to a decrease of the glass tran-
sition temperature in comparison with the one expected
in the case without tunneling. It was proposed in [22] that
such a shift may be detected by comparison of Tg and the
melting temperature Tm. It is well known from the anal-
ysis of experimental data that for most of glass-formers
the ratio Tg/Tm is about 2/3 [21]. Since Tm is ∼ 1.5 ∗ Tg,
the influence of quantum effects on Tm should be much
smaller than on Tg. Thus, the shift of Tg to lower tem-
peratures due to quantum effects should be stronger than
that of Tm and should decrease the ratio Tg/Tm from its
classical value ∼ 2/3.

To estimate the shift of Tg, the Lindemann-like argu-
ment is used [22]. Assuming that in the classical case the
glass transition temperature would be Tg0 and the quan-
tum fluctuations shift it to Tg one can write the relation
between Tg0 and Tg as r2

0 + r2
T (Tg) = r2

T (Tg0). In har-
monic approximation MSD changes linearly with temper-
ature, and at Tg it can be represented as r2

T (Tg0) = bTg0,
and r2

T (Tg) = bTg where the factor b is determined by the
elastic properties of the glass. Thus, in this approximation
the shift of the glass transition temperature is described
by the relation

r2
0 + bTg = bTg0. (29)

Assuming the usual classical relation between Tg0 and Tm,
Tg0 ∼ CTm, where C ≈ 2/3, eq. (29) can be rewritten
as r2

0/b + Tg = ATm. In the Debye model of vibrations
r2
0/b = θD/4 as it follows from eq. (25). This leads to a

simple relationship between Tg and Tm of the system:

Tg

Tm
=

A

1 + r2
0

bTg

≈ A

1 + θD

4Tg

. (30)

Equation (30) predicts that quantum effects should lead to
a significant decrease of the ratio Tg/Tm with decreasing
Tg/θD.

Using eq. (30) one can find the dependence of the ra-
tio Tg/Tm on Tg if one knows how θD scales with Tg. In
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ref. [22] it was noted that in various materials θD variates
much weaker than Tg, so for fitting purposes in a rough
approximation it was taken a constant. Here we are tak-
ing into account variations of both Tg and θD. In harmonic
approximation, the relation between ωD and Tg is

Mω2
Dr2

g ∼ kBTg. (31)

The Lindemann criterion applied at Tg gives u2
g = γ2a2

where a is a characteristic intermolecular distance, a ∝
V

1/3
m , Vm is the molecular volume, M is the molecular

mass and γ ∼ 0.12–0.13 is a universal Lindemann con-
stant. As a result,

ωD ∼
(

kBTg

M

) 1
2 1

γa
. (32)

At this point we apply the scaling relation between the
molecular mass and Tg in molecular glass-formers that was
found in ref. [35]: Tg ∝ Mp, where the exponent p ∼ 1/2.
Assuming also some average density for molecular glass-
formers one can find that a ∝ V

1/3
m ∝ M1/3 ∝ T

2/3
g . As

a result, eq. (32) gives the following dependence of the
Tg/Tm ratio on Tg:

Tg

Tm
=

D

1 + (T0/Tg)13/6
. (33)

In eq. (33) D and T0 are just constants, T0 =
(�/4γk

1/2
B )6/13(4πρ/3)2/13(T 2

1 /M0)5/13, where ρ is the
average density, M0 is the atomic mass unit and T1 = 14.4
is a coefficient in the correlation Tg = T1(M/M0)1/2 [35].
Equation (33) shows that at high Tg, Tg/Tm ∼ D. How-
ever, the ratio Tg/Tm decreases strongly with decrease in
Tg.

The analysis of the literature data in molecular and
hydrogen-bonding glass-formers indeed reveals the pre-
dicted strong decrease in the Tg/Tm ratio for materials
with Tg below ∼ 60–80K (fig. 4). In materials with Tg

above ∼ 100K, the Tg/Tm ratio retains the classical value
in the range ∼ 0.5–0.8, but it drops to much lower val-
ues for materials with Tg below 50K (fig. 4). Moreover,
eq. (33) provides a reasonable qualitative description for
the behavior of Tg/Tm (fig. 4) with the best-fit parame-
ters D ≈ 0.72 ± 0.01 and T0 ≈ 51 ± 3K. The constant T0

can be estimated if one takes T1 = 14.4K from ref. [35]
and also some characteristic density for molecular glass-
formers, e.g., ρ = 1.5 g/cm3. With these values of param-
eters one gets T0 = 65K. Although it is larger than one
found by the fit, it is a reasonable agreement taking into
account the crude level of the estimate and the arbitrary
value of density used in the estimation.

These experimental results (fig. 4) suggest that quan-
tum effects can indeed play a significant role in reducing
the glass transition temperature in low-Tg materials. A
larger relative contribution of the zero-point vibrations
at lower temperatures leads to a broadening of the glass
transition range by significantly decreasing Tg.

Fig. 4. The dependence of the ratio Tg/Tm on Tg in molecular
and hydrogen-bonding glass-formers. The up triangle presents
H2O; the down triangle D2O (data from ref. [36]). The line is
the fit by the expression (14). Stars correspond to estimates
of Tg in low-Tg glass-formers from ref. [37]; squares show data
from ref. [22].

3.2 Influence of quantum effects on temperature
variations of structural relaxation

One of the important characteristics of the glass transi-
tion is the steepness of the temperature dependence of
the structural relaxation time τα(T ) close to Tg. It can be
characterized by the so-called fragility index, or steepness
index m defined as [38,39]:

m =
∂ log�τα(T )


∂[Tg

T ]

∣∣∣∣∣
T=Tg

. (34)

The least-fragile–known glass-forming systems, covalent
bonded silica and BeF2, exhibit an Arrhenius-like temper-
ature dependence of their viscosity or τα(T ) over a broad
temperature range above Tg leading to a fragility value of
m ∼ 20–22 [40,41]. Fragility increases strongly in molec-
ular liquids, reaching m ∼ 80–100 in many van der Waals
and ionic liquids [40,41].

It is obvious that a weaker temperature dependence of
tunneling should lead to less steep τα(T ). In ref. [22] it was
shown that the influence of quantum effects on the temper-
ature dependence of τα can be described by the inclusion
of zero-point MSD to the usual expression of the elastic
theory of glass transition, eqs. (18), (21). At sufficiently
low T the thermal part becomes smaller than u2

0. At such
temperatures the rate of tunneling is comparable to or
larger than the rate of thermally activated transitions. If
this happens in the supercooled state, T ≥ Tg, the temper-
ature dependence of τα will be unusually weak, the appar-
ent activation energy will be decreasing with decreasing
temperature and fragility will be unusually low [22,42]. To
quantify the influence of the quantum effects on fragility
m, we use eq. (18) and the definition of m in eq. (34). A
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Fig. 5. The dependence of fragility on Tg for molecular liquids.
Solid line: fit by eq. (38) with T0 = 84 K. Squares: data from
ref. [41]; triangle: 3-MP data from ref. [43]; circles: data from
ref. [44].

simple estimation gives

m =
mmol

1 + r2
0/r2

g

, (35)

where

mmol = m0
Tg

r2(T )
dr2(T )

dT

∣∣∣∣
T=Tg

(36)

is the fragility of classical molecular supercooled liquids,
mmol ∼ 70–90, and m0 = log10 τα(Tg)/τ0 in the case
(eq. (18)), m0 = a1+2a2 = 14.3 in the case (eq. (19)), and
m0 = (α/2) log10 τα(Tg)/τ0 in the case (eq. (20)). Thus,
eq. (35) follows from the all three versions of the elastic
theory of the glass transition, eqs. (18)–(20), with possi-
bly slightly different values of mmol. Taking r2

T (Tg) and
r2
0 from the Debye model of acoustic vibrations (eqs. (25)

and (26)), eq. (36) can be rewritten as

m =
mmol

1 + θD/4Tg
. (37)

This equation is very similar to eq. (33). The analysis
of the ratio θD/Tg that follows eq. (33) can be applied
in exactly the same form here leading to the following
dependence of fragility on Tg:

m =
mmol

1 + (T0/Tg)13/6
. (38)

Equation (38) shows that at high Tg, m ∼ mmol ∼ 70–90.
However, at decreasing Tg, m also decreases due to quan-
tum effects. In fig. 5, the dependence of the fragility
on Tg for various molecular glass-formers is shown. We
see that at higher temperatures m is more or less Tg-
independent and scatters mostly in the range 70–90. How-
ever at lower temperatures, T ≤ 100–120K, fragility sys-
tematically decreases and drops below m ∼ 50 in liquids

Fig. 6. Log τα estimated according to the universal
eq. (19) [31] in the Debye model for various Tg/θD ratios. A de-
crease in the Tg/θD ratio leads to a significant decrease in the
fragility m (shown in the order corresponding to the curves).

with Tg ≤ 100–120K. The best fit of the data to eq. (38)
gives mmol = 87 ± 4, T0 = 84 ± 8K (fig. 5). Although
the parameter T0 differs from the value estimated using
Tg (fig. 4), the difference is not very large taking into ac-
count the rough approximation used. Thus, the unusually
low fragility in low-temperature molecular liquids, such as
2-methyl pentane, might be a signature of moderate quan-
tum effects [42]. We note that although the contribution
of anharmonicity to the amplitude of MSD at T ≤ Tg in
most cases is not significant, the slope of the MSD de-
pendence on T may increase significantly at Tg, especially
in fragile systems. We took care of this in our estimate of
fragility in eqs. (35)–(37) by using the experimental values
of fragility of molecular glass-formers in eq. (36).

A qualitative estimate of the influence of quantum ef-
fects on the temperature dependence of τα was done in
ref. [22] in the framework of the elastic model of the glass
transition modified by including zero-point MSD that ac-
counts for tunneling. As was discussed in sect. 2, the im-
portance of quantum effects can be tuned by the ratio of
Tg/θD. Assuming the Debye model for r2(T ), the temper-
ature dependence of τα(T ) can be estimated using eq. (19)
with zero-point MSD included (fig. 6). At relatively high
Tg (Tg/θD = 2), when quantum effects are negligible,
eq. (19) predicts a normal behavior for log τα vs. 1/T ,
i.e. a monotonic increase of the slope (apparent activation
energy) upon cooling. However, an unusual behavior is
predicted for low-Tg materials: one can observe a clear de-
crease in the apparent activation energy upon approaching
Tg when the ratio Tg/θD is approximately 0.2–0.3 (fig. 6).
For the cases with Tg/θD = 0.2 and 0.3, eq. (19) predicts a
drop in the fragility index to unusually low values m ∼ 10
and ∼ 16, respectively (fig. 6). We emphasize that the
shape of the log τα vs. Tg/T curve for systems with small
ratios Tg/θD turns from convex (i.e., super-Arrhenius) to
concave (i.e., sub-Arrhenius). In other words, in the case



Page 8 of 15 Eur. Phys. J. E (2017) 40: 57

of significant quantum effects the apparent activation en-
ergy (the slope of log τα vs. 1/T ) decreases upon approach-
ing Tg, in contrast to the traditionally observed increasing.
Thus, the analysis in the framework of the elastic model of
the glass transition predicts that quantum effects will lead
to an unusual temperature dependence of the structural
relaxation time upon approaching Tg, that will result in
a low fragility and might lead to an apparent fragile-to-
strong crossover in the temperature dependence of τα(T ).
We note that of course the Debye approximation for the
temperature dependence of MSD in this model estima-
tion does not present real fragile systems, where MSD in-
creases non-linearly above Tg. However, even this approx-
imation can illustrate a new qualitative feature that arises
in the T -dependence of the structural relaxation time due
to quantum effects, a kind of fragile–to-strong crossover.

A similar qualitative result can be obtained in the
potential energy landscape approach. Let us consider
the double-well potential picture of structural relaxation
(fig. 2). When the over-barrier relaxation dominates, the
activation energy of the structural relaxation is defined by
the energy barrier height Eb. Upon cooling, the probabil-
ity of tunneling from some level En will be higher than
the probability of the over-barrier relaxation. As a result,
τα(T ) will exhibit an apparent Arrhenius-like behavior
with the activation energy E lower than Eb. A further de-
crease in T will lead to a higher probability of tunneling
from the lower levels in the well, i.e. the apparent activa-
tion energy will decrease upon cooling. This will lead to
a sub-Arrhenius temperature dependence and unusually
low fragility. The latter can be as low as m ∼ 0 if the tun-
neling from the zero-point level dominates the structural
relaxation.

The presented in this section analysis shows that quan-
tum effects should lead to unusual temperature variations
of the structural relaxation. The rate of these variations
(the slope of log τα vs. 1/T ) should decrease upon ap-
proaching Tg, while it only increases in most glass-formers.
In other words, while all usual glass-forming liquids show
only convex (super-Arrhenius) behavior of log τα vs. 1/T ,
quantum effects might lead to a crossover from convex-
to-concave (sub-Arrhenius) behavior of log τα upon ap-
proaching Tg. As a result, the glass transition range be-
comes significantly broader, the ratio Tg/Tm decreases sig-
nificantly, and fragility might be unusually low. Indeed,
low-Tg liquids exhibit rather low values of Tg/Tm (fig. 4)
and fragility (fig. 5).

As we discussed in sect. 2, only light molecules are ex-
pected to have significant quantum effects in their struc-
tural dynamics. Among them, methane, ammonia and wa-
ter are the most promising materials (fig. 1). However,
only the dynamics of water have been studied in details,
and below we will discuss the recently published studies
on the dynamics of water close to Tg [25,36].

4 Quantum effects in bulk water

The zero-point energy of a H-bonded water network (O-
H vibrations) is ∼ 2000K [12], i.e. it is much higher

Fig. 7. Temperature dependence of τα in water close to Tg,
and its estimates using total MSD (solid line), and MSD with
neglected zero-point vibrations (dotted line) (data from [25]).

than the ambient temperature. Thus, large quantum ef-
fects in dynamics are expected. Yet most of the simula-
tions completely disregard quantum effects in water. How-
ever, some of the simulations of water attempted to take
quantum effects into account, e.g., [12–14,45–48]. They
demonstrated that even at ambient T , quantum effects
lead to an increase of diffusion coefficients and a decrease
of relaxation times by ∼ 15–50%. Such quantum effects
should be more pronounced at lower temperatures. In-
deed, significant quantum effects in proton momentum
distribution in supercooled water were found in simula-
tions [47] and in a deep inelastic neutron scattering exper-
iment [49]. These effects lead, in particular, to the excess
of the mean kinetic energy of protons [49]. Tunneling of
hydrogen was observed in various systems, including tun-
neling of atomic hydrogen in metals [50], and rotational
tunneling of methyl CH4 and ammonia NH3 groups [6,51].
Recently, rotational tunneling of single water molecules
confined in 5A beryl pores was also detected by inelastic
neutron scattering [52]. There are signatures of the pro-
ton tunneling contributions to the structural relaxation
spectra of ices [48,53–56].

Unfortunately, experimental studies of bulk water at
low temperatures are prevented by crystallization. So,
studies of bulk water dynamics at temperatures close to Tg

are usually done either on low-density amorphous (LDA)
water, prepared by a compression of ice at low T and
the following annealing at T ∼ 130–140K, or on vapor-
deposited (VD) samples [57–66]. Recent dielectric studies
of VD and LDA water revealed [25,36,67] unusually low
fragility, m = 14 (fig. 7), which is much lower than m ∼ 20
known for the least fragile systems like SiO2. Moreover,
apparent Arrhenius dependence of τα(T ) results in un-
usually long τ0 ∼ 10−11–10−10 s (fig. 7). These studies
also discovered an anomalously large isotope effect in Tg

of bulk water, ∼ 12K increase of Tg with H/D substi-
tution [36] (fig. 8). This is significantly larger than the
usual increase of less than 1K observed in other hydrogen-
bonding liquids [68,69]. All these unusual/anomalous dy-
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Fig. 8. Change of relaxation time and shift of Tg in deeply
supercooled water due to the isotope effect [36]. Arrhenius fits
are shown by solid lines (the fitting parameters are presented
in table 1).

Fig. 9. MSD in LDA water (solid line) calculated using the
vibrational density of states (inset). The dashed line marks the
expected Tg ∼ 136K of water. The inset shows the generalized
vibrational density of states g(E) for intermolecular vibrations
in LDA water, H2O (green symbols) and D2O (red symbols),
obtained from INS spectra [70–72].

namic properties of water can be well explained by quan-
tum effects in structural relaxation [25,36].

The analysis of the vibrational density of states ob-
tained using neutron scattering spectra revealed that r2

0
contributes ∼ 60% of the total MSD at Tg in water [25]
(fig. 9). Thus indeed quantum effects are not negligible in
water at temperatures close to Tg. This is also consistent
with its relatively high Debye temperature θD ∼ 2Tg [22].
It was shown in [25] that the elastic theory of glass tran-
sition (eq. (19)) with experimental MSD describes well
the anomalously slow temperature variations of τα(T ) in
supercooled water (fig. 7). It is a surprising result tak-
ing into account a good agreement of eq. (19) predictions

with the experimental data without any adjustable pa-
rameters (fig. 7). Moreover, disregarding the zero-point
contribution to MSD of water in eq. (19) leads to a drasti-
cal contradiction with the experimental data. Thus, these
results suggest that the contribution of quantum fluctua-
tions to MSD indeed should be included into the elastic
theory of glass transition. This analysis has been done
in harmonic approximation. Anharmonic conributions to
MSD in LDA ice are ∼ 6% at 123K, and might reach
7% at 140K [73]. The anharmonic contribution to the
fragility (using eqs. (19) and (34)) is then of the order
of 2Δr2(Tg)/r2(Tg) < 0.15, where Δr2(Tg) is the anhar-
monic contribution to MSD. The difference of fragility
with and without account for zero-point vibrations in wa-
ter is about 250%, thus it is far larger than possible an-
harmonic corrections.

This low-temperature behavior of water does not
match the well-studied high-temperature (T > 235K)
regime that corresponds to the super-Arrhenius (frag-
ile) behavior [25] (fig. 10). This well-known puzzle has
been noted already in ref. [74], and suggests an apparent
fragile-to-strong crossover in water dynamics around 210–
235K [58,75–80]. Many researchers relate this anomaly to
an underlying liquid-liquid phase transition in water in
the temperature range T ∼ 210–235K [58,75–80]. Even
results of computer simulations have been intensively dis-
cussed with regard to the existence of two phases of su-
percooled water [79,81]. A detailed analysis of the simula-
tions of the ST2 water model [79] revealed a coexistence of
two metastable liquid states with different densities. How-
ever, it is not obvious how well the ST2 model reproduces
the real bulk water. Recent experimental studies using ul-
trafast X-ray diffraction revealed no phase transition in
bulk water down to T ∼ 227K [82]. Instead, the authors

Fig. 10. Comparison of low-temperature (solid blue trian-
gles) and high-temperature data for the structural relaxation
time in water. Open squares: dielectric spectroscopy data
in water [83]; solid black circles: shifted viscosity data [74].
The red line presents a schematic picture of the apparent
fragile-to-strong crossover between high-temperature and low-
temperature regimes. It was ascribed to a crossover from over-
barrier relaxation to tunneling in [25,36].
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Fig. 11. The ratio of relaxation times in deuterated and pro-
tonated molecules, τα(D)/τα(H) ∼ 1.1–1.3 for bulk water at
T > Tm (closed triangles), for glycerol (open squares) and
propylene glycol (open triangles) in the entire T range. This
ratio increases in supercooled water (solid line), and reaches
τα(D)/τα(H) ∼ 10 for LDA and deposited water (diamonds)
at T ∼ 140–136 K. Data are from [36] and references therein.

observed a smooth variation in the diffraction peaks re-
flecting a smooth improving of the tetrahedral structure
upon cooling [82,84]. Recently, it was proposed [25,36]
that the apparent fragile-to-strong crossover can reflect a
crossover from the classical over-barrier relaxation to tun-
neling upon cooling bulk water (fig. 10). This behavior
is consistent with the theoretical predictions discussed in
sect. 3 (fig. 6).

Also the observed anomalously large isotope effect in
the structural relaxation and Tg of water (fig. 8) is consis-
tent with the tunneling process. In classical over-barrier
relaxation, the change in the particles mass should only
influence the characteristic prefactor τ0 (assuming that
structure and potential energy landscape are not affected
by H/D substitution). In that case τ0 ∝ M1/2 should
change between 5% and 40%, depending on the trans-
lational and rotational type of motions. Indeed, the iso-
tope effect on water dynamics at high T is on the level ∼
15–30% (fig. 11). The same weak isotope effect is observed
in other H-bonding systems (glycerol and propylene gly-
col) in the entire temperature range where the relaxation
times changes by more than 10 orders (fig. 11) [68,69].
However, in the case of supercooled water the isotope ef-
fect in dynamics increases sharply upon cooling, reach-
ing ∼ 160% at T ∼ 240K (fig. 11) [85]. Then, it exceeds
1000% at T ∼ 140K in LDA water [36]. So a strong (more
than 10 fold) slowing-down in dynamics upon H/D sub-
stitution cannot be explained in the classical case. At the
same time, tunneling probability depends exponentially
on the mass of the particle and can increase significantly
depending on the barrier’s parameters (eq. (4)).

To describe the rate of structural relaxation in water,
a model that takes into account the tunneling (sect. 2.1)
was used in ref. [25]. There are 3 parameters defining the
potential U(x) (fig. 2): i) the curvature at the bottom

of the well, ii) the barrier height Eb, and iii) the barrier
width at the bottom a (fig. 2). Here x is a configurational
coordinate along the transition pass. To determine the pa-
rameters of the well we need a restriction imposed by the
experimentally measured relaxation rates: The relaxation
time should be ∼ 103 s at T = 136K, the apparent acti-
vation energy should be ∼ 36 kJ/mol in the vicinity of Tg

and τ0 should correspond to the curvature of the potential
at the bottom.

Dielectric spectroscopy measures the reorientation of
dipole moments that can be connected to the rotation of
H-atom(s) around the oxygen atom in water. In that case
we can take the mass M in eq. (17) as a proton mass. This
is also in agreement with the recent result of ref. [86] that
molecular reorientation dynamics govern the glass transi-
tions of the amorphous ices. The vibrational frequency in
the well we can take ascribe to the librational mode. Ac-
cording to the vibrational spectrum of water (fig. 9) the
librational mode is dominated by the peak in the range
�ω = 70–120meV. This energy fixes the value of τ0 ∼
10−14 s and the curvature of the harmonic potential U(x).

Using eq. (17) and the formulated-above restrictions,
we obtained Eb − E0 = 46 ± 1 kJ/mol, rather indepen-
dent of the choice of the librational frequency ω. The
choice of the librational energy, however, affects strongly
the distance of the tunneling: It was obtained that a =
2.2 ± 0.02 Å for �ω = 90meV, and a = 1.9 ± 0.02 Å for
�ω = 120meV. Taking into account the simplicity of the
model, these values of a are in a reasonable agreement with
the jump length 1.5–1.9 Å found in supercooled water by
the quasi-elastic neutron scattering [87] and NMR [85].
The estimated activation energy ∼ 46 kJ/mol is compa-
rable to that found by dielectric spectroscopy in different
ices, 44–57 kJ/mol [54,88–92].

A 10-fold increase of the α-relaxation time in D2O in
comparison with H2O can be explained also by a simple
estimate. In H2O apparent τ0 ∼ 10−11 s is by about 3
orders longer than the expected one based on the vibra-
tional frequency, τ0 ∼ 10−14 s. This 3 orders difference
is caused by the tunneling amplitude Atun. In D2O Atun

will be larger roughly by a square root of the D and H
atoms mass ratio (eq. (4)), (MD/MH)1/2 ∼ 1.4, i.e. the
isotope effect increases the tunneling exponent Atun by
additional ∼ 1.2 orders. This explains the factor of ∼ 10
difference between τα in H2O and D2O. Also, according to
the apparent Arrhenius fit (fig. 8), τ0 in D2O is actually
by ∼ 2 orders slower than in H2O (table 1), which is still
consistent with this rough estimate.

In spite of a very simplistic and schematic character of
our estimate, it shows that the rotational tunneling effects
can indeed lead to the experimentally measured fragility,
m = 14, with the model parameters corresponding to the
experimental values found in supercooled water. More ac-
curate estimates are required to verify the probability of
tunneling in realistic water potentials at low temperatures.

5 Quantum effects in confined water

Although water is one of the best materials for studying
quantum effects in a supercooled liquid state, there is a
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Table 1. Glass transition temperature Tg, fragility m, appar-
ent activation energy E close to Tg and the respective pre-
exponential factor τ0.

Tg m E log τ0

(K) (kJ/mol) (s)

Confined H2O [95] 115 19.5 ± 1 41 ± 1 −15.7 ± 0.3

Confined D2O [95] 118 19 ± 1 43 ± 1 −16.1 ± 0.1

Bulk VD H2O [36] 136 14 ± 1 36 ± 1 −10.9 ± 0.3

Bulk VD D2O [36] 146 13 ± 1 33 ± 1 −8.8 ± 0.3

Fig. 12. Temperature dependence of the relaxation time es-
timated from the dielectric loss spectra of confined H2O and
D2O [93].

major experimental problem —the fast crystallization of
bulk water in the temperature range 230–160K (the so-
called “no man’s land”) that prevents studies of equilib-
rium bulk liquid water. To suppress crystallization, water
can be studied in a strong confinement in the pores with
diameter ∼ 2 nm or smaller. Quantum effects in hydro-
gen motion of strongly confined water are well known and
are essential even at room temperature [52,93,94]. Coher-
ent delocalization of protons in water in carbon nanotubes
and the respective anomaly of momentum distribution has
been measured using deep inelastic neutron scattering [94]
at temperatures as high as 230K. Recently, a new “quan-
tum tunneling state” of water molecules confined in 5 Å
channels in the mineral beryl was found using inelastic
neutron scattering and computer simulations [52]. The au-
thors have shown that the protons are delocalized and wa-
ter molecules tunnel between six symmetrically equivalent
positions in the beryl structure [52].

The influence of quantum effects on the dynamics of
confined to 2.2 nm pores water was recently investigated
in ref. [95]. These studies were able to cover a broad tem-
perature range and indeed revealed an apparent fragile-
to-strong crossover at T ∼ 180K (fig. 12). However, this
behavior is not specific for confined water and has been
observed in many other strongly confined liquids (e.g.,
ethylene glycol [96], salol [97], glycerol [98] and other con-
fined liquids [99–101]). The glass transition temperatures

Fig. 13. Low-temperature behavior of the dielectric relax-
ation time for vapor-deposited H2O (red solid squares), vapor-
deposited D2O (blue solid circles) [36], confined H2O (red tri-
angles) and confined D2O (blue diamonds) [95]. Solid lines
present the Arrhenius fit of the low-temperature part of re-
laxation times. A comparison shows that deposited water has
unreasonable values for τ0 and fragility for classical over-barrier
relaxation, while the data for confined water look reasonable.

of confined water was found to be ∼ 115K for H2O and
∼ 118K for D2O, significantly lower than in the bulk wa-
ter (Tg ∼ 136K and 146K, respectively [25,36]). The ob-
served isotope shift of Tg, ΔTg ∼ 3K is much smaller than
that in the bulk water where ΔTg ∼ 10K (fig. 8) [36], al-
though it is large relative to other H-bonded liquids. All
these results suggest a reduced role of the quantum effects
in the structural dynamics of confined water.

The fragility of confined H2O and D2O is equal to ∼ 19
(table 1) [95]. Although this value is extremely low, it
is larger than the fragility of the bulk water (m ∼ 14),
again indicating smaller quantum effects in confined wa-
ter. The low-temperature Arrhenius regime of confined
and bulk water (fig. 12) have different activation ener-
gies. The apparent activation energy of the confined water
E ∼ 41 kJ/mol is higher than that observed in the bulk
LDA and VD water, E ∼ 36 kJ/mol [25]. The apparent
Arrhenius behavior in confined water has a reasonable τ0

for a light molecule, ∼ 10−15–10−16 s, in contrast to an
unusually long τ0 ∼ 10−10–10−11 s observed in the bulk
water [25] (fig. 13). Reasonable values of τ0 and fragility
(table 1) suggest no evidence of tunneling in strongly con-
fined water, in contrast to the behavior of bulk VD and
LDA water described above [25]. We note that, although
the apparent activation energy in confined water appears
to be significantly higher than in the bulk (41 kJ/mol vs.
36 kJ/mol), yet its relaxation time is ∼ 103–104 times
faster than in the bulk in the same temperature range
(fig. 13).

Although tunneling does not give a significant con-
tribution to the structural relaxation rate in 2.2 nm con-
fined water, the quantum effects remain not negligible.
A detailed analysis of the data (fig. 12 and table 1) re-
veals that the activation energy of the Arrhenius depen-
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Fig. 14. Schematic presentation of a possible scenario for re-
laxation in bulk and confined water. The reduction of the en-
ergy barrier due to confinement leads to a higher probability
of the over-barrier jumps than tunneling. However, the role
of zero-point quantum fluctuations remains significant even in
confined water, leading to a rather strong isotope effect.

dence is slightly (∼ 1–2 kJ/mol) higher in confined D2O
than in confined H2O (table 1). This difference most
probably comes from the so-called trivial quantum ef-
fect, i.e., a decrease of the activation energy due to zero-
point energy E0 = �ω/2 (fig. 14). As was discussed
above, E0 might be related to the energy of the libra-
tional mode of water molecules. It is �ω ∼ 70–90meV
for H2O and it shifts to �ω ∼ 50–65meV in D2O (in-
set in fig. 9) [70–72]. This shift is consistent with the ex-
pected shift ∼ (MD/MH)1/2 ∼ 1.4, and corresponds to
the change in the zero-point energy upon D/H substitu-
tion Δ(�ω/2) ∼ 10–12meV ∼ 1 kJ/mol. This value agrees
well with the experimentally observed difference in the
apparent activation energy of confined H2O and D2O at
low temperatures (fig. 12, table 1), and suggests that the
change in the zero-point energy is the major reason for
the observed difference in the dynamics of confined H2O
and D2O and their relatively strong shift of Tg.

The reason for the much smaller quantum effects in the
dynamics of confined water in 2.2 nm pores can be related
to the decrease of the energy barrier for structural relax-
ation upon confinement. As we discussed in sect. 5, the en-
ergy barrier for the relaxation observed in bulk LDA and
VD at T close to Tg is ∼ 46 kJ/mol [25]. With this high-
energy barrier, the probability for a proton (as a part of
the rotation motion) to tunnel is higher than the probabil-
ity to jump over the energy barrier at T < 140–150K [25,
36]. In confined water the activation energy for this re-
laxation is reduced ∼ 41 kJ/mol (fig. 14). Such reduction
of the barrier height in strong confinement is known also
for other liquids [68,69,96–98]. As a result, an over-barrier
relaxation becomes more probable than tunneling in con-
fined water. This leads to the normal value of the apparent
τ0 and significantly lower Tg in confined water (fig. 13).
However, as we mentioned above, the smaller value of the

zero-point energy for librational motions in D2O leads to
a measurable change in the apparent activation energy
upon D/H substitution, i.e. a slowing-down of the relax-
ation, and a relatively large shift in Tg between confined
H2O and D2O. All these results emphasize a significant
difference in the dynamics of bulk and confined water,
and the important role the quantum effects play in water
dynamics at low temperatures.

6 Summary and outlook

In this article we reviewed some possible nuclear quan-
tum effects in the structural relaxation of supercooled liq-
uids and their glass transition. Various criteria show that
the quantum effects may be important for the structural
dynamics of light molecular liquids only. The probabil-
ity of quantum tunneling decreases exponentially with the
mass of the moving particles suggesting that only lightest
atoms/molecules might have significant quantum effects at
not very low temperatures. These quantum effects should
lead to several phenomena in the structural dynamics of
liquids:

– extended supercooled range, i.e. unusually low ratio
Tg/Tm;

– anomalously slow temperature variations of the struc-
tural relaxation close to Tg, i.e. very low fragility;

– sub-Arrhenius behavior of τα(T ), i.e. a decrease in
the apparent activation energy of structural relaxation
upon cooling;

– apparent fragile-to-strong crossover;
– anomalously large isotope effects.

As we discussed in the text, all these phenomena are ob-
served in the dynamics of bulk water. These experimental
data clearly suggest that the rotation of water molecule
in the bulk might be dominating by tunneling even at
temperatures T ∼ 130–150K [25,36]. This is an unusually
high temperature for tunneling in structural relaxation.
It is caused by specifics of water molecule rotation —it
involves only the motion of protons. According to the de
Boer parameter (fig. 1), similar effects should be observed
in liquids of other light molecules such as methane CH4

and ammonia NH3, and maybe also in liquid ethylene,
ethane, oxygen and nitrogen. Indeed, rotational tunneling
is known for the plastic phase of methane [6]. It would be
interesting to study these liquids in a supercooled state
where quantum effects including tunneling might domi-
nate the dynamics.

Even if the tunneling probability remains lower than
the over-barrier relaxation, the zero-point energy can still
play an important role in dynamics by effectively reduc-
ing the energy barrier, and by the sizeable contribution of
zero-point quantum oscillations to the total mean squared
atomic displacements. This should lead to the unusually
low fragility of some low-Tg molecular liquids [96]. The
importance of the zero-point energy has been emphasized
in studies of confined water [95] and in the proton con-
ductivity of phosphoric acids [102].
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We emphasize that the presented theoretical picture is
strongly simplified and does not take into account many
important aspects. One of the important unsolved tasks
is to take into account the indistinguishability of the par-
ticles and respective quantum statistics. Every particle is
either a boson or a fermion. At low temperatures, in quan-
tum regime, identical particles are indistinguishable, and
the wave function of the system should be symmetrical for
bosons and asymmetrical for fermions with respect to the
permutation of any two particles. At non-zero temperature
there is a coherence length that limits the size of the re-
gion where quantum indistinguishability is important. At
larger distances decoherence due to thermal fluctuations
makes the quantum correlations insignificant. The impor-
tance of quantum correlations for the structural dynamics
was stressed recently on the example of liquid 4He [103].
It was shown by simulations that the Bose statistics is the
main factor that keeps 4He in a liquid state all the way
down to T = 0 under the pressure of its own vapor [103].
The Lindemann-like argument of high zero-point MSD in
liquid 4He is not sufficient to keep it liquid at low enough
T [103]. One of the attempts to take into account quan-
tum coherence was made in ref. [104]. It was based on
the hypothesis that there are quantum correlations in wa-
ter between each H+ and the protons of the surround-
ing water molecules, leading to the formation of coher-
ent dissipative structures. This approach predicted that
an anomalous decrease of H+ conductance in H2O-D2O
mixtures would take place [105], and it was confirmed ex-
perimentally [106]. Later evidence of quantum correlation
effects of protons and deuterons in water was found by the
analysis of the Raman spectra of liquid H2O-D2O [107].
However, no study of the possible effect of quantum cor-
relations on the structural relaxation in water or other
light molecule systems is known, although some simula-
tion work was promised to be done in future [11].

Our last comment is related to simulations of water.
It is known that despite many existing potentials, none
of them can consistently describe the structure, dynamics
and other properties of water in a broad enough temper-
ature range. Based on the presented-here discussion we
suggest that disregarding quantum effects might be one
of the major problem in simulations of water. The zero-
point energy even for librational motions is ∼ 500K, i.e.
much higher than ambient T . Neglecting it in simulations
is usually compensated by the deformation of the potential
energy landscape and results in an inadequate description
of the hydrogen bonding in water. We suspect that simula-
tions of water molecules will be successful only when quan-
tum effects will be explicitly taken into account. These
effects are indeed negligible for most of other molecules
because their zero-point energy is usually much smaller
than Tg or ambient temperature, and then any quantum
corrections might be small. But this is not the case for
water, methane and ammonia, and maybe for some other
light molecular liquids.
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