https://doi.org/10.1140/epjqt/s40507-024-00232-2
Brief Report
Simulating
lattice gauge theory with the variational quantum thermalizer
1
Institut für Theoretische Physik, Goethe-Universität, Frankfurt am Main, Germany
2
Science Laboratories, University of Durham, Durham, UK
Received:
3
August
2023
Accepted:
7
March
2024
Published online:
15
March
2024
The properties of strongly-coupled lattice gauge theories at finite density as well as in real time have largely eluded first-principles studies on the lattice. This is due to the failure of importance sampling for systems with a complex action. An alternative to evade the sign problem is quantum simulation. Although still in its infancy, a lot of progress has been made in devising algorithms to address these problems. In particular, recent efforts have addressed the question of how to produce thermal Gibbs states on a quantum computer. In this study, we apply a variational quantum algorithm to a low-dimensional model which has a local abelian gauge symmetry. We demonstrate how this approach can be applied to obtain information regarding the phase diagram as well as unequal-time correlation functions at non-zero temperature.
Key words: Hamiltonian lattice gauge theory / Quantum computing
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.