https://doi.org/10.1140/epjqt/s40507-024-00241-1
Research
Quantum image representations based on density matrices in open quantum systems
1
School of Mathematics and Statistics, Henan University, 475001, Kaifeng, China
2
School of Mathematics and Statistics, Henan University of Science and Technology, 471000, Luoyang, China
Received:
25
January
2024
Accepted:
9
April
2024
Published online:
19
April
2024
So far, research on quantum image representation has gone through more than 20 years. During this time, the quantum image representation models used have almost all been based on state vectors. However, in practical problems, the environment and the principal quantum system cannot be separated, and isolated quantum systems do not exist in principle. This case is often referred to as an open quantum system. In open quantum systems, many problems involve density matrices, such as the calculation of Von Neumann entropy, the quantization of coherence, and the operator-sum representations of quantum operations. Therefore, the existing quantum image representation models are only suitable for closed quantum systems. To this end, the paper proposes three models that can not only represent quantum images in an open quantum system but also decompose the evolution process of quantum images utilizing operator-sum decomposition. These three models are the representation model of quantum gray-scale images, the tensor product representation model of quantum color images, and the representation model of quantum color images based on mixed states in the Bloch sphere, respectively. All these image representation models have strong correlations among them and are very different from their classical analogues. Between them, the biggest difference is that the paper employs density matrices, inspired by incoherent-coherent states, to represent quantum images rather than classical state vectors. By means of one of the representation models proposed in the paper, we finally demonstrate the evolution process of the quantum image going through the amplitude damping channel.
Key words: Open quantum systems / Image representations models / Bloch sphere / Quantum noise channels
Dayong Lu, Qianqian Zhang and Meiyu Xu contributed equally to this work.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.