https://doi.org/10.1140/epjqt/s40507-024-00251-z
Research
An intelligent threshold selection method to improve orbital angular momentum-encoded quantum key distribution under turbulence
1
Information and Navigation College, Air Force Engineering University, Xi’an, China
2
Chinese Academy of Military Science, Beijing, China
3
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China
r
liubo08@nudt.edu.cn
s
slfly2012@163.com
Received:
28
March
2024
Accepted:
30
May
2024
Published online:
6
June
2024
High-dimensional quantum key distribution (HD-QKD) encoded by orbital angular momentum (OAM) presents significant advantages in terms of information capacity. However, perturbations caused by free-space atmospheric turbulence decrease the performance of the system by introducing random fluctuations in the transmittance of OAM photons. Currently, the theoretical performance analysis of OAM-encoded QKD systems exists a gap when concerning the statistical distribution under the free-space link. In this article, we analyzed the security of QKD systems by combining probability distribution of transmission coefficient (PDTC) of OAM with decoy-state BB84 method. To address the problem that the invalid key rate is calculated in the part transmittance interval of the post-processing process, an intelligent threshold method based on neural network is proposed to improve OAM-encoded QKD, which aims to conserve computing resources and enhance system efficiency. Our findings reveal that the ratio of root mean square (RMS) OAM-beam radius to Fried constant plays a crucial role in ensuring secure key generation. Meanwhile, the training error of neural network is at the magnitude around 10−3, indicating the ability to predict optimization parameters quickly and accurately. Our work contributes to the advancement of parameter optimization and prediction for free-space OAM-encoded HD-QKD systems. Furthermore, it provides valuable theoretical insights to support the development of free-space experimental setups.
Key words: Statistical distribution / High-dimensional quantum key distribution / Threshold selection / Neural network
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.