https://doi.org/10.1140/epjqt/s40507-024-00256-8
Research
Synergy between noisy quantum computers and scalable classical deep learning for quantum error mitigation
1
School of Science and Technology, Physics Division, Università di Camerino, Via Madonna delle Carceri, 62032, Camerino (MC), Italy
2
Sezione di Perugia, INFN, 06123, Perugia, Italy
Received:
16
April
2024
Accepted:
3
July
2024
Published online:
15
July
2024
We investigate the potential of combining the computational power of noisy quantum computers and of classical scalable convolutional neural networks (CNNs). The goal is to accurately predict exact expectation values of parameterized quantum circuits representing the Trotter-decomposed dynamics of quantum Ising models. By incorporating (simulated) noisy expectation values alongside circuit structure information, our CNNs effectively capture the underlying relationships between circuit architecture and output behaviour, enabling, via transfer learning, also predictions for circuits with more qubits than those included in the training set. Notably, thanks to the quantum information, our CNNs succeed even when supervised learning based only on classical descriptors fails. Furthermore, they outperform a popular error mitigation scheme, namely, zero-noise extrapolation, demonstrating that the synergy between quantum and classical computational tools leads to higher accuracy compared with quantum-only or classical-only approaches. By tuning the noise strength, we explore the crossover from a computationally powerful classical CNN assisted by quantum noisy data, towards rather precise quantum computations, further error-mitigated via classical deep learning.
Key words: Quantum computing / Quantum circuits / Supervised learning / Deep neural networks / Quantum error mitigation / Transfer learning
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.