https://doi.org/10.1140/epjqt/s40507-024-00233-1
Research
Coulomb effect in hybrid double quantum dot-metal nanoparticle systems considering the wetting layer
1
Department of Physics, College of Science, University of Thi-Qar, Nasiriya, Iraq
2
Nasiriya Nanotechnology Research Laboratory (NNRL), College of Science, University of Thi-Qar, Nasiriya, Iraq
Received:
31
January
2024
Accepted:
13
March
2024
Published online:
26
March
2024
Many body effects in the wetting layer (WL)-double quantum dot (DQD)-metal nanoparticle (MNP) structure have been studied by modeling the Coulomb scattering rates in this structure. The strong coupling between WL-DQD-MNPs was considered. An orthogonalized plane wave (OPW) is assumed between WL-QD transitions. The transition momenta are calculated accordingly to specify the normalized Rabi frequency on this structure, considering the strong coupling between the WL-DQD-MNP structures. This approach is important for realizing scattering rates, including in-and-out capture and relaxation rates, which are essential for specifying the type of structure used depending on the optimum value of the scattering time required to fit the application. The QD hole capture rate is the highest, and the hole capture times are the shortest. The relaxation times are less than the electron capture times by one order, while they are half of the hole capture times. The capture rates increase with increasing distance R between the DQDs and the MNP. High tunneling increases hole-capture rates and changes the relaxation rates, showing the importance of tunneling in controlling the scattering rates.
Key words: Coulomb scattering rates / Metal nanoparticle / Double quantum dot / Capture rate / Relaxation rate / OPW / Wetting layer
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.