https://doi.org/10.1140/epjqt/s40507-025-00383-w
Research
Transformer-based quantum error decoding enhanced by QGANs: towards scalable surface code correction algorithms
1
School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China
2
School of Science, Qingdao University of Technology, Qingdao, China
Received:
24
December
2024
Accepted:
9
June
2025
Published online:
19
June
2025
To address qubits’ high environmental sensitivity and reduce the significant error rates in current quantum devices, quantum error correction stands as one of the most dependable approaches. The topological surface code, renowned for its unique qubit lattice structure, is widely considered a pivotal tool for enabling fault-tolerant quantum computation. Through redundancy introduced across multiple qubits, the surface code safeguards quantum information and identifies errors via state changes captured by syndrome qubits. However, simultaneous errors in data and syndrome qubits substantially escalate decoding complexity. Quantum Generative Adversarial Networks (QGANs) have emerged as promising deep learning frameworks, effectively harnessing quantum advantages for practical tasks such as image processing and data optimization. Consequently, a topological code trainer for quantum-classical hybrid GANs is proposed as an auxiliary model to enhance error correction in machine learning-based decoders, demonstrating significantly improved training accuracy compared to the traditional Minimum Weight Perfect Matching (MWPM) algorithm, which achieves an accuracy of 65%. Numerical experiments reveal that the decoder achieves a fidelity threshold of P = 0.1978, substantially surpassing the traditional algorithm’s threshold of P = 0.1024. To enhance decoding efficiency, a Transformer decoder is integrated, incorporating syndrome error outputs trained via QGANs into its framework. By leveraging its self-attention mechanism, the Transformer effectively captures long-range qubit dependencies at a global scale, enabling high-fidelity error correction over larger dimensions. Numerical validation of the surface code error threshold demonstrates an 8.5% threshold with a correction success rate exceeding 94%, whereas the local MWPM decoder achieves only 55% and fails to support large-scale computation at a 4% threshold.
Key words: Quantum error correction / QGAN decoder / Reinforcement learning
© The Author(s) 2025
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.